262 research outputs found

    Global-to-local incompatibility, monogamy of entanglement, and ground-state dimerization: Theory and observability of quantum frustration in systems with competing interactions

    Full text link
    Frustration in quantum many body systems is quantified by the degree of incompatibility between the local and global orders associated, respectively, to the ground states of the local interaction terms and the global ground state of the total many-body Hamiltonian. This universal measure is bounded from below by the ground-state bipartite block entanglement. For many-body Hamiltonians that are sums of two-body interaction terms, a further inequality relates quantum frustration to the pairwise entanglement between the constituents of the local interaction terms. This additional bound is a consequence of the limits imposed by monogamy on entanglement shareability. We investigate the behavior of local pair frustration in quantum spin models with competing interactions on different length scales and show that valence bond solids associated to exact ground-state dimerization correspond to a transition from generic frustration, i.e. geometric, common to classical and quantum systems alike, to genuine quantum frustration, i.e. solely due to the non-commutativity of the different local interaction terms. We discuss how such frustration transitions separating genuinely quantum orders from classical-like ones are detected by observable quantities such as the static structure factor and the interferometric visibility.Comment: 11 pages, 7 figures. Matches published versio

    Four-photon orbital angular momentum entanglement

    Get PDF
    Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum information protocols, and the study of fundamentally new quantum states. To date, only two of such multidimensional particles have been entangled albeit with ever increasing dimensionality. Here we use pulsed spontaneous parametric downconversion (SPDC) to produce photon quadruplets that are entangled in their OAM, or transverse-mode degrees of freedom; and witness genuine multipartite Dicke-type entanglement. Apart from addressing foundational questions, this could find applications in quantum metrology, imaging, and secret sharing.Comment: 5 pages, 4 figure

    The state space for two qutrits has a phase space structure in its core

    Full text link
    We investigate the state space of bipartite qutrits. For states which are locally maximally mixed we obtain an analog of the ``magic'' tetrahedron for bipartite qubits--a magic simplex W. This is obtained via the Weyl group which is a kind of ``quantization'' of classical phase space. We analyze how this simplex W is embedded in the whole state space of two qutrits and discuss symmetries and equivalences inside the simplex W. Because we are explicitly able to construct optimal entanglement witnesses we obtain the border between separable and entangled states. With our method we find also the total area of bound entangled states of the parameter subspace under intervestigation. Our considerations can also be applied to higher dimensions.Comment: 3 figure

    A simplex of bound entangled multipartite qubit states

    Full text link
    We construct a simplex for multipartite qubit states of even number n of qubits, which has the same geometry concerning separability, mixedness, kind of entanglement, amount of entanglement and nonlocality as the bipartite qubit states. We derive the entanglement of the class of states which can be described by only three real parameters with the help of a multipartite measure for all discrete systems. We prove that the bounds on this measure are optimal for the whole class of states and that it reveals that the states possess only n-partite entanglement and not e.g. bipartite entanglement. We then show that this n-partite entanglement can be increased by stochastic local operations and classical communication to the purest maximal entangled states. However, pure n-partite entanglement cannot be distilled, consequently all entangled states in the simplex are n-partite bound entangled. We study also Bell inequalities and find the same geometry as for bipartite qubits. Moreover, we show how the (hidden) nonlocality for all n-partite bound entangled states can be revealed.Comment: 11 pages, 4 figures; 2nd version changed considerably and a detailed derivation of the multipartite measure is include

    Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    Full text link
    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.Comment: accepted by NATURE Scientific Reports, 12 pages, 1 figures, 2 table

    Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return

    Get PDF
    Mean systemic filling pressure (Psf) is an indicator of the filling state of the systemic circulation. Cardiac output (Q′) is related linearly to the difference between Psf and central venous pressure (Pcv), according to:Q′ = (Psf -Pcv)/Rsf, where Rsf is the flow resistance downstream from the sites where blood pressure is equal to Psf In 16 anaesthetized pigs we evaluated Psf, Rsf and Q′ during baseline conditions, continuous endotoxin infusion and after subsequent fluid loading. Psf and Rsf were determined from simultaneous measurements of Q′ and Pcv at seven levels of lung inflation. The following results were obtained. Psf was 8.1 ±1.8 mm Hg (mean ± SD) during baseline conditions, increased after endotoxin infusion to 9.9 ± 3.2 mm Hg (P = 0.04) and remained the same after infusion of 18 ml · kg-1 of Ringer's lactate. Rsf increased from 0.34 ± 0.07 to 0.80 ± 0.34 mm Hg · ml-1 · s by endotoxin and decreased after fluid infusion to 0.58 ± 0.14. Q′ changed inversely proportional to Rsf (P = 0.001). Rsf changes were highly correlated with the changes in total systemic flow resistance (RS) (P < 0.001). Endotoxin caused haemoconcentration and a decrease in plasma volume. The stability of Psf during endotoxin infusion and after volume loading indicate that the stressed volume was well maintained and changes in blood volume are compensated by changes in nonstressed volume. The increase in Rsf can be attributed to arteriolar vasoconstriction, venous vasoconstriction and haemoconcentration
    • …
    corecore