345 research outputs found

    Magnetic field induced singlet - triplet phase transition in quasi one-dimensional organic superconductors

    Full text link
    We propose a theoretical model of quasi-one-dimensional superconductors, with attractive electron-electron interactions dominant in the singlet d-wave channel and sub-dominant in the p-wave channel. We discuss, in the mean field approximation, the effect of a magnetic field applied perpendicularly to the direction of the lowest conductivity. The lowest free energy phase corresponds to a singlet d-wave symmetry in low fields, but to a triplet symmetry in high fields. A first order singlet-triplet phase transition is expected at moderate applied fields of a few teslas. We propose to ascribe the recent critical field and NMR experimental data, observed in superconducting (TMTSF)2ClO4 to such an effect.Comment: 6 pages, 2 figures, accepted in EP

    Coexistence of Superconductivity and Spin Density Wave orderings in the organic superconductor (TMTSF)_2PF_6

    Full text link
    The phase diagram of the organic superconductor (TMTSF)_2PF_6 has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T_SDW and T_SC and the superconducting critical current. The onset temperature T_SC is practically constant (1.20+-0.01 K) in this region where only the SC/SDW domain proportion below T_SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T_SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings.Comment: 13 pages, 10 figures, revised v: fig.9 added, section 4.2 rewritten, accepted v: sections 4&5 improve

    Solving the Richardson equations for Fermions

    Full text link
    Forty years ago Richardson showed that the eigenstates of the pairing Hamiltonian with constant interaction strength can be calculated by solving a set of non-linear coupled equations. However, in the case of Fermions these equations lead to singularities which made them very hard to solve. This letter explains how these singularities can be avoided through a change of variables making the Fermionic pairing problem numerically solvable for arbitrary single particle energies and degeneracies.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Unification Theory of Angular Magnetoresistance Oscillations in Quasi-One-Dimensional Conductors

    Full text link
    We present a unification theory of angular magnetoresistance oscillations, experimentally observed in quasi-one-dimensional organic conductors, by solving the Boltzmann kinetic equation in the extended Brillouin zone. We find that, at commensurate directions of a magnetic field, resistivity exhibits strong minima. In two limiting cases, our general solution reduces to the results, previously obtained for the Lebed Magic Angles and Lee-Naughton-Lebed oscillations. We demonstrate that our theoretical results are in good qualitative and quantitative agreement with the existing measurements of resistivity in (TMTSF)2_2ClO4_4 conductor.Comment: 6 pages, 2 figure

    Soliton Wall Superlattice in Quasi-One-Dimensional Conductor (Per)2Pt(mnt)2

    Full text link
    We suggest a model to explain the appearance of a high resistance high magnetic field charge-density-wave (CDW) phase, discovered by D. Graf et al. [Phys. Rev. Lett. v. 93, 076406 (2004)] in (Per)2Pt(mnt)2. In particular, we show that the Pauli spin-splitting effects improve the nesting properties of a realistic quasi-one-dimensional electron spectrum and, therefore, a high resistance Peierls CDW phase is stabilized in high magnetic fields. In low and very high magnetic fields, a periodic soliton wall superlattice (SWS) phase is found to be a ground state. We suggest experimental studies of the predicted phase transitions between the Peierls and SWS CDW phases in (Per)2Pt(mnt)2 to discover a unique SWS phase.Comment: 10 pages, 3 figures. Submitted to Physical Review Letters (February 19, 2007

    Machine learning algorithms distinguish discrete digital emotional fingerprints for web pages related to back pain

    Get PDF
    Back pain is the leading cause of disability worldwide. Its emergence relates not only to the musculoskeletal degeneration biological substrate but also to psychosocial factors; emotional components play a pivotal role. In modern society, people are significantly informed by the Internet; in turn, they contribute social validation to a “successful” digital information subset in a dynamic interplay. The Affective component of medical pages has not been previously investigated, a significant gap in knowledge since they represent a critical biopsychosocial feature. We tested the hypothesis that successful pages related to spine pathology embed a consistent emotional pattern, allowing discrimination from a control group. The pool of web pages related to spine or hip/knee pathology was automatically selected by relevance and popularity and submitted to automated sentiment analysis to generate emotional patterns. Machine Learning (ML) algorithms were trained to predict page original topics from patterns with binary classification. ML showed high discrimination accuracy; disgust emerged as a discriminating emotion. The findings suggest that the digital affective “successful content” (collective consciousness) integrates patients’ biopsychosocial ecosystem, with potential implications for the emergence of chronic pain, and the endorsement of health-relevant specific behaviors. Awareness of such effects raises practical and ethical issues for health information providers

    Efficacy of Low-Dose Amitriptyline for Chronic Low Back Pain:A Randomized Clinical Trial

    Get PDF
    Importance: Antidepressants at low dose are commonly prescribed for the management of chronic low back pain and their use is recommended in international clinical guidelines. However, there is no evidence for their efficacy. Objective: To examine the efficacy of a low-dose antidepressant compared with an active comparator in reducing pain, disability, and work absence and hindrance in individuals with chronic low back pain. Design, Setting, and Participants: A double-blind, randomized clinical trial with a 6-month follow-up of adults with chronic, nonspecific, low back pain who were recruited through hospital/medical clinics and advertising was carried out. Intervention: Low-dose amitriptyline (25 mg/d) or an active comparator (benztropine mesylate, 1 mg/d) for 6 months. Main Outcomes and Measures: The primary outcome was pain intensity measured at 3 and 6 months using the visual analog scale and Descriptor Differential Scale. Secondary outcomes included disability assessed using the Roland Morris Disability Questionnaire and work absence and hindrance assessed using the Short Form Health and Labour Questionnaire. Results: Of the 146 randomized participants (90 [61.6%] male; mean [SD] age, 54.8 [13.7] years), 118 (81%) completed 6-month follow-up. Treatment with low-dose amitriptyline did not result in greater pain reduction than the comparator at 6 (adjusted difference, -7.81; 95% CI, -15.7 to 0.10) or 3 months (adjusted difference, -1.05; 95% CI, -7.87 to 5.78), independent of baseline pain. There was no statistically significant difference in disability between the groups at 6 months (adjusted difference, -0.98; 95% CI, -2.42 to 0.46); however, there was a statistically significant improvement in disability for the low-dose amitriptyline group at 3 months (adjusted difference, -1.62; 95% CI, -2.88 to -0.36). There were no differences between the groups in work outcomes at 6 months (adjusted difference, absence: 1.51; 95% CI, 0.43-5.38; hindrance: 0.53; 95% CI, 0.19-1.51), or 3 months (adjusted difference, absence: 0.86; 95% CI, 0.32-2.31; hindrance: 0.78; 95% CI, 0.29-2.08), or in the number of participants who withdrew owing to adverse events (9 [12%] in each group; χ2 = 0.004; P =.95). Conclusions and Relevance: This trial suggests that amitriptyline may be an effective treatment for chronic low back pain. There were no significant improvements in outcomes at 6 months, but there was a reduction in disability at 3 months, an improvement in pain intensity that was nonsignificant at 6 months, and minimal adverse events reported with a low-dose, modest sample size and active comparator. Although large-scale clinical trials that include dose escalation are needed, it may be worth considering low-dose amitriptyline if the only alternative is an opioid. Trial Registration: ANZCTR: ACTRN12612000131853

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Far-ultraviolet aurora identified at comet 67P/ Churyumov-Gerasimenko

    Get PDF
    Having a nucleus darker than charcoal, comets are usually detected from Earth through the emissions from their coma. The coma is an envelope of gas that forms through the sublimation of ices from the nucleus as the comet gets closer to the Sun. In the far-ultraviolet portion of the spectrum, observations of comae have revealed the presence of atomic hydrogen and oxygen emissions. When observed over large spatial scales as seen from Earth, such emissions are dominated by resonance fluorescence pumped by solar radiation. Here, we analyse atomic emissions acquired close to the cometary nucleus by the Rosetta spacecraft and reveal their auroral nature. To identify their origin, we undertake a quantitative multi-instrument analysis of these emissions by combining coincident neutral gas, electron and far-ultraviolet observations. We establish that the atomic emissions detected from Rosetta around comet 67P/Churyumov-Gerasimenko at large heliocentric distances result from the dissociative excitation of cometary molecules by accelerated solar-wind electrons (and not by electrons produced from photo-ionization of cometary molecules). Like the discrete aurorae at Earth and Mars, this cometary aurora is driven by the interaction of the solar wind with the local environment. We also highlight how the oxygen line O I at wavelength 1,356 Å could be used as a tracer of solar-wind electron variability
    corecore