189 research outputs found

    Trajectories of land use change in Europe: a model-based exploration of rural futures

    Get PDF
    Land use change is characterized by a high diversity of change trajectories depending on the local conditions, regional context and external influences. Policy intervention aims to counteract the negative consequences of these changes and provide incentives for positive developments. Region typologies are a common tool to cluster regions with similar characteristics and possibly similar policy needs. This paper provides a typology of land use change in Europe at a high spatial resolution based on a series of different scenarios of land use change for the period 2000-2030. A series of simulation models ranging from the global to the landscape level are used to translate scenario conditions in terms of demographic, economic and policy change into changes in European land use pattern. A typology developed based on these simulation results identifies the main trajectories of change across Europe: agricultural abandonment, agricultural expansion and urbanization. The results are combined with common typologies of landscape and rurality. The findings indicate that the typologies based on current landscape and ruralities are poor indicators of the land use dynamics simulated for the regions. It is advocated that typologies based on (simulated) future dynamics of land change are more appropriate to identify regions with potentially similar policy need

    Mapping with Sparse Local Sensors and Strong Hierarchical Priors

    Get PDF
    The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of relatively weak priors. In contrast, the present study considers the mapping problem in environments where only sparse, local sensory information is available. To compensate for these weak likelihoods, we make use of strong hierarchical object priors. Hierarchical models were popular in classical blackboard systems but are here applied in a Bayesian setting and novelly deployed as a mapping algorithm. We give proof of concept results, intended to demonstrate the algorithm’s applicability as a part of a tactile SLAM module for the whiskered SCRATCHbot mobile robot platform

    Adaptable Categorization of Hands and Tools in Prosthesis Users.

    Get PDF
    Some theories propose that tools become incorporated into the neural representation of the hands (a process known as tool embodiment; Maravita & Iriki, 2004). Others suggest that conceptual body representation is rigid and that experience with one’s own body is insufficient for adapting bodily cognition, as shown in individuals born without hands (Vannuscorps & Caramazza, 2016) and in amputees with persistent phantom hand representation (Kikkert et al., 2016). How sharp is the conceptual boundary between hands and tools? This question is particularly relevant for individuals who have lost one hand and use prosthetic hands as tools to supplement their missing hand function. Although both congenital one-handers (i.e., amelia patients) and one-handed amputees are encouraged to use prostheses, the former show a greater tendency than the latter to use prosthetic hands in daily tasks (Jang et al., 2011). One-handers have a fully functional remaining hand (allowing them to use handheld tools, etc.), which makes them less likely to show semantic distortions in hand and tool representation. However, their bodies and their interactions with their environment are fundamentally altered by their disability (Makin et al., 2013; Makin, Wilf, Schwartz, & Zohary, 2010). To determine how real-world experience shapes conceptual categorization of hands, tools, and prostheses, we recruited one-handers with congenital or acquired unilateral hand loss to take part in a study involving a priming task. We predicted that one-handers, particularly congenital one-handers, would show more conceptual blurring between hands and tools than control participants would, as a result of less experience with a hand and more reliance on prostheses (which are essentially tools) for typical hand functions. We further predicted that individual differences in prosthesis usage would be reflected in implicit categorization of hands, manual tools, and prostheses

    How Personal Judgment Influences Scenario Development: an Example for Future Rural Development in Europe

    Get PDF
    Scenarios of alternative plausible futures have been used extensively to explore the potential effects of socioeconomic and environmental change. The ultimate objective of any explorative scenario exercise is to assess the variation in possible futures to provide insights into the range of potential outcomes. These results provide stakeholders with guidance for policy development, planning, and management. We explore how personal judgment can influence scenario development. Scenarios for the future of European rural regions are used to explore alternative outcomes under a public interventionist future and a market liberalization oriented future. A transparent qualitative framework is used to identify differences in outcomes based on personal judgment. Results show that, for both scenarios, there are plausible mechanisms that can lead to similar positive or negative outcomes. Choosing a single process per scenario, based on personal judgment and interpretation, can therefore greatly influence scenario outcomes and limit the range of uncertainty that is covered by the scenarios. The exercise shows the importance of making these judgments explicit in scenario development, especially when exploring broad consequences of alternative policy directions that may be based in political worldviews

    Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus

    Get PDF
    Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system.We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions.The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense

    Active Electric Imaging: Body-Object Interplay and Object's “Electric Texture”

    Get PDF
    This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this “global effect” of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles (“local effect” or “object's electric texture”). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information

    Comparable Ages for the Independent Origins of Electrogenesis in African and South American Weakly Electric Fishes

    Get PDF
    One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation

    Disrupting Circadian Homeostasis of Sympathetic Signaling Promotes Tumor Development in Mice

    Get PDF
    and why disruption of circadian rhythm may lead to tumorigenesis. oncogenic potential, leading to tumor development in the same organ systems in wild-type and circadian gene-mutant mice. is a clock-controlled physiological function. The central circadian clock paces extracellular mitogenic signals that drive peripheral clock-controlled expression of key cell cycle and tumor suppressor genes to generate a circadian rhythm in cell proliferation. Frequent disruption of circadian rhythm is an important tumor promoting factor
    corecore