28 research outputs found

    Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway

    Get PDF
    <p>Abstract</p> <p>Backgroud</p> <p>Cerebral vasospasm (CVS) and early brain injury remain major causes of morbidity and mortality after aneurysmal subarachnoid hemorrhage (SAH). Hydroxymethylglutaryl coenzyme A reductase inhibitors, also known as statins, has the neuroprotective effects and ameliorating CVS after SAH. This study was designed to explore apoptosis inhibiting effects of atorvastatin and its potential apoptotic signal pathway after SAH.</p> <p>Results</p> <p>Preserving blood-brain-barrier permeability, decreasing brain edema, increasing neurological scores and ameliorating cerebral vasospasm were obtained after prophylactic use of atorvastatin. TUNEL-positive cells were reduced markedly both in basilar artery and in brain cortex by atorvastatin. Apoptosis-related proteins P53, AIF and Cytochrome C were up-regulated after SAH, while they were not affected by atorvastatin. In addition, up-regulation of caspase-3 and caspase-8 after SAH was decreased by atorvastatin treatment both in mRNA and in protein levels.</p> <p>Conclusion</p> <p>The neuroprotective effects of atorvastatin after SAH may be related to its inhibition of caspase-dependent proapoptotic pathway based on the present results.</p

    Secure iLearning

    No full text
    This paper discusses the specific security requirements of Internet-based learn-ing. Two concrete solutions for improving the degree of security achievable are shown. First a framework for secure testing is introduced. This framework pre-vents manipulation from the side of the students during learning. Thus allowing a reliable control of learning success. The second solution presented deals with the problem of confidentiality and protection of copyright. By establishing a life-long control of the copyright owner over his documents it prevents illegitimate access and redistribution

    IL-28A (IFN-λ2) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease.

    Get PDF
    IL-28 (IFN-λ) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-γ. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28Rα(-/-) mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c(+) dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-γ(-/-) mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c(+) cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c(+) DC function in experimental allergic asthma. →See accompanying Closeup by Michael R Edwards and Sebastian L Johnston http://dx.doi.org/10.1002/emmm.201100143

    Protective role of nuclear factor of activated T cells 2 in CD8+ long-lived memory T cells in an allergy model.

    No full text
    BACKGROUND: The transcriptional regulation of cytokines released and controlled by memory T cells is not well understood. Defective IFN-gamma production in allergic asthma correlates in human beings with the risk of wheezing in childhood. OBJECTIVE: To understand the role of the transcription factor nuclear factor of activated T cells 2 (NFATc2) in memory and effector T cells in the airways in experimental allergic asthma. METHODS: We used murine models of allergic asthma and adoptive cell transfer of fluorescence-activated sorted cells in a disease model. RESULTS: Mice lacking NFATc2 developed an increase in airwayhyperresponsiveness (AHR), remodeling, and serum IgE levelson ovalbumin sensitization. This phenotype was associated withCD81CD1222 T cells deficient in IFN-g production in theairways. The origin of this phenotype in NFATc2(2/2) mice wasrelated to an expanded population of lung CD81CD1221(IL-2Rb chain) CD127hi (IL-7 receptor [R] a chain1) long-livedmemory cells. Adoptive transfer of ovalbumin-specific CD81NFATc2(2/2) T cells enhanced the AHR generated byNFATc2(2/2) CD41 T cells in immunodeficient mice, increasedIL-17, and reduced IFN-g production in the reconstituted mice.Depletion of the memory CD81CD1221IL-7Rhigh T-cellpopulation corrected the defect in IFN-g production by lungNFATc2(2/2) CD81CD1222 cells and abrogated the increasedAHR observed in NFATc2(2/2) CD81 T-cell-reconstituted micewith a severe combined immunodeficiency disorder. CONCLUSION: Taken together, our results suggest that NFATc2 expression in long-lived memory CD8+ T cells controls IL-2 and IFN-gamma production in lung CD8+ T cells, which then limits TH17 and TH2 development in the airways during allergen challenge

    Asthmatic changes in mice lacking T-bet are mediated by IL-13

    No full text
    Mice with a targeted deletion of the T-bet gene exhibit spontaneous airway hyperresponsiveness (AHR), airway inflammation, enhanced recovery of T(h)2 cytokines from bronchoalveolar lavage fluid, sub-epithelial collagen deposition and myofibroblast transformation. Here we analyze the mechanisms responsible for the chronic airway remodeling observed in these mice. CD4+ T cells isolated from the lung of T-bet-deficient mice were spontaneously activated CD44(high)CD69(high) memory T cells, with a typical T(h)2 cytokine profile. Neutralization of IL-13 but not IL-4 resulted in amelioration of AHR in airways of mice lacking T-bet. IL-13 blockade also led to reduced eosinophilia and decreased vimentin, transforming growth factor beta (TGF-beta) and alpha smooth muscle actin (alphaSMA) levels. T-bet(-/-) lung fibroblasts proliferated very rapidly and released increased amounts of TGF-beta. Interestingly, neutralization of TGF-beta ameliorated aspects of the chronic airway remodeling phenotype but did not reduce AHR. These data highlight a T-bet-directed function for IL-13 in controlling lung remodeling that is both dependent on and independent of its interaction with TGF-beta in the asthmatic airwa

    Severe hepatic injury in interleukin 18 (IL-18) transgenic mice: a key role for IL-18 in regulating hepatocyte apoptosis in vivo

    No full text
    Background: Interleukin 18 (IL-18) is a cytokine with pleiotropic activity that augments T helper 1 responses and cytotoxic activity of natural killer cells. Methods: To assess the function of IL-18 in vivo, we generated IL-18 transgenic (IL-18 Tg) mice under the control of a CD2 promoter/enhancer construct. Results: Macroscopically, IL-18 Tg mice showed reduced relative liver weight compared with wild-type littermates. TUNEL assays demonstrated increased hepatocyte apoptosis, and primary hepatocytes isolated from IL-18 Tg mice exhibited an increased spontaneous apoptosis rate. Furthermore, cross linking of Fas increased significantly the apoptosis rate in hepatocytes isolated from wild- type mice but to a much lesser extent in IL-18 Tg mice, suggesting spontaneous activation of the Fas pathway in the latter mice. In fact, in vivo blockade of Fas signal transduction by an adenovirus overexpressing the dominant negative form of the Fas associated death domain rescued hepatocytes from undergoing apoptosis. Finally, adoptive transfer of CD4(+) T cells from IL-18 Tg mice but not from wild-type littermates in SCID mice resulted in severe liver failure with massive periportal fibrosis due to hepatocyte apoptosis. Conclusion: IL-18 plays a fundamental role in regulating hepatocyte apoptosis. Furthermore, our transgenic model provides a novel tool to study the mechanisms of IL-18 dependent liver injury in vivo

    Supplementary Material for: Characterization of New Organic Nitrate Hybrid Drugs Covalently Bound to Valsartan and Cilostazol

    No full text
    <b><i>Background and Purpose:</i></b> Organic nitrates represent a group of nitrovasodilators that are clinically used for the treatment of ischemic heart disease. With the present studies we synthesized and characterized new organic nitrate hybrid molecules. Compounds CLC-1265 (valsartan mononitrate) and CLC-1280 (valsartan dinitrate) are derivatives of the angiotensin receptor blocker valsartan, with CLC-1265 containing a single organic nitrate linker and CLC-1280 also containing a second, different linker. Compounds CLC-2000 (cilostazol mononitrate) and CLC-2100 (cilostazol dinitrate) are nitrate derivatives of the phosphodiesterase III inhibitor cilostazol. All compounds are designed as hybrid molecules, potentially combining the NO-donating properties of organic nitrates with the AT1-blocking activity of valsartan or the phosphodiesterase-III–inhibiting effect of cilostazol. <b><i>Experimental Approach:</i></b> The properties of new drugs were assessed by isometric tension recording, inhibition of platelet aggregation and formation of mitochondrial reactive oxygen and nitrogen species. <b><i>Key Results:</i></b> In this report, all new nitrate compounds are shown, in vitro, to induce vasodilation in the range of other, classical organic nitrates, without inducing oxidative stress or classical nitrate tolerance. In addition, the new hybrid nitrate molecules displayed superior antiaggregatory properties over classical mono- and dinitrates. <b><i>Conclusions and Implications:</i></b> Our results demonstrate that organic nitrates can be successfully linked to existing therapeutic molecules to create a new class of molecular entities with a potential dual mechanism of action via combining the established pharmacological properties of valsartan or cilostazol with the vasodilating properties of organic nitrates. Future experimental studies have to demonstrate whether the combined action of these compounds translates to superior therapeutic effects
    corecore