117 research outputs found

    The structure of fluids with impurities

    Full text link
    The influence of dilute impurities on the structure of a fluid solvent is investigated theoretically. General arguments, which do not rely on particular models, are used to derive an extension of the Ornstein-Zernike form for the solvent structure factor at small scattering vectors. It is shown that dilute impurities can influence the solvent structure only if they are composed of ions with significantly different sizes. Non-ionic impurities or ions of similar size are shown to not alter the solvent structure qualitatively. This picture is compatible with available experimental data. The derived form of the solvent structure factor is expected to be useful to infer information on the impurity-solvent interactions form measured scattering intensities

    Bulk and interfacial properties of binary hard-platelet fluids

    Full text link
    Interfaces between demixed fluid phases of binary mixtures of hard platelets are investigated using density-functional theory. The corresponding excess free energy functional is calculated within a fundamental measure theory adapted to the Zwanzig model, in which the orientations of the particles of rectangular shape are restricted to three orthogonal orientations. Density and orientational order parameter profiles at interfaces between coexisting phases as well as the interfacial tension are determined. A density inversion, oscillatory density profiles, and a Fisher-Widom line have been found in a mixture of large thin and small thick platelets. The lowest interfacial tension corresponds to the mean bulk orientation of the platelets being parallel to the interface. For a mixture of large and small thin platelets, complete wetting of an isotropic-nematic interface by a second nematic phase is found.Comment: 7 pages, 6 figure

    Phase behavior of ionic liquid crystals

    Full text link
    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied

    Critical Casimir forces between planar and crenellated surfaces

    Full text link
    We study critical Casimir forces between planar walls and geometrically structured substrates within mean-field theory. As substrate structures, crenellated surfaces consisting of periodic arrays of rectangular crenels and merlons are considered. Within the widely used proximity force approximation, both the top surfaces of the merlons and the bottom surfaces of the crenels contribute to the critical Casimir force. However, for such systems the full, numerically determined critical Casimir forces deviate significantly fromthe pairwise addition formalismunderlying the proximity force approximation. A first-order correction to the proximity force approximation is presented in terms of a step contribution arising from the critical Casimir interaction between a planar substrate and the right-angled steps of the merlons consisting of their upper and lower edges as well as their sidewalls.Comment: 9 pages, 6 figure

    Alignment of cylindrical colloids near chemically patterned substrates induced by critical Casimir torques

    Full text link
    Recent experiments have demonstrated a fluctuation-induced lateral trapping of spherical colloidal particles immersed in a binary liquid mixture near its critical demixing point and exposed to chemically patterned substrates. Inspired by these experiments, we study this kind of effective interaction, known as the critical Casimir effect, for elongated colloids of cylindrical shape. This adds orientational degrees of freedom. When the colloidal particles are close to a chemically structured substrate, a critical Casimir torque acting on the colloids emerges. We calculate this torque on the basis of the Derjaguin approximation. The range of validity of the latter is assessed via mean-field theory. This assessment shows that the Derjaguin approximation is reliable in experimentally relevant regimes, so that we extend it to Janus particles endowed with opposing adsorption preferences. Our analysis indicates that critical Casimir interactions are capable of achieving well-defined, reversible alignments both of chemically homogeneous and of Janus cylinders.Comment: 24 pages, 12 figures; v2: 22 pages, 12 figure

    Critical Casimir effect for colloids close to chemically patterned substrates

    Full text link
    Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200nm/K.Comment: 27 pages, 14 figure

    Critical adsorption and critical Casimir forces for geometrically structured confinements

    Full text link
    We study the behavior of fluids, confined by geometrically structured substrates, upon approaching a critical point at T = Tc in their bulk phase diagram. As generic substrate structures periodic arrays of wedges and ridges are considered. Based on general renormalization group arguments we calculate, within mean field approximation, the universal scaling functions for order parameter profiles of a fluid close to a single structured substrate and discuss the decay of its spatial variation into the bulk. We compare the excess adsorption at corrugated substrates with the one at planar walls. The confinement of a critical fluid by two walls generates effective critical Casimir forces between them. We calculate corresponding universal scaling functions for the normal critical Casimir force between a flat and a geometrically structured substrate as well as the lateral critical Casimir force between two identically patterned substrates.Comment: 25 pages, 21 figure

    Critical adsorption on non-spherical colloidal particles

    Full text link
    We consider a non-spherical colloidal particle immersed in a fluid close to its critical point. The temperature dependence of the corresponding order parameter profile is calculated explicitly. We perform a systematic expansion of the order parameter profile in powers of the local curvatures of the surface of the colloidal particle. This curvature expansion reduces to the short distance expansion of the order parameter profile in the case that the solvent is at the critical composition.Comment: 9 pages, 7 figure

    Interaction of cylindrical polymer brushes in dilute and semi-dilute solution

    Get PDF
    We present a systematic study of flexible cylindrical brush-shaped macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and by dynamic light scattering (DLS) in dilute and semi-dilute solution. The SLS and SANS data extrapolated to infinite dilution lead to the shape of the polymer that can be modeled in terms of a worm-like chain with a contour length of 380 nm and a persistence length of 17.5 nm. SANS data taken at higher polymer concentration were evaluated by using the polymer reference interaction site model (PRISM). We find that the persistence length reduce from 17.5 nm at infinite dilution to 5.3 nm at the highest concentration (volume fraction 0.038). This is comparable with the decrease of the persistence length in semi-dilute concentration predicted theoretically for polyelectrolytes. This finding reveals a softening of stiffness of the polymer brushes caused by their mutual interaction
    corecore