9 research outputs found

    The Brassicaceae-Specific EWR1 Gene Provides Resistance to Vascular Wilt Pathogens

    Get PDF
    Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well

    New strategies and tools in quantitative genetics: how to go from the phenotype to the genotype

    No full text
    ISBN : 978-0-8243-0668-7Quantitative genetics has a long history in plants: It has been used to study specific biological processes, identify the factors important for trait evolution, and breed new crop varieties. These classical approaches to quantitative trait locus mapping have naturally improved with technology. In this review, we show how quantitative genetics has evolved recently in plants and how new developments in phenotyping, population generation, sequencing, gene manipulation, and statistics are rejuvenating both the classical linkage mapping approaches (for example, through nested association mapping) as well as the more recently developed genome-wide association studies. These strategies are complementary in most instances, and indeed, one is often used to confirm the results of the other. Despite significant advances, an emerging trend is that the outcome and efficiency of the different approaches depend greatly on the genetic architecture of the trait in the genetic material under study

    The Arabidopsis thaliana DNA-binding protein AHL19 mediates Verticillium wilt resistance

    No full text
    Verticillium spp. are destructive soilborne fungal pathogens that cause vascular wilt diseases in a wide range of plant species. Verticillium wilts are particularly notorious, and genetic resistance in crop plants is the most favorable means of disease control. In a gain-of-function screen using an activation-tagged Arabidopsis mutant collection, we identified four mutants, A1 to A4, which displayed enhanced resistance toward the vascular wilt species Verticillium dahliae, V. albo-atrum and V. longisporum but not to Fusarium oxysporum f. sp. raphani. Further testing revealed that mutant A2 displayed enhanced Ralstonia solanacearum resistance, while mutants A1 and A3 were more susceptible toward Pseudomonas syringae pv. tomato. Identification of the activation tag insertion site in the A1 mutant revealed an insertion in close proximity to the gene encoding AHL19, which was constitutively expressed in the mutant. AHL19 knock-out alleles were found to display enhanced Verticillium susceptibility whereas overexpression of AHL19 resulted in enhanced Verticillium resistance, showing that AHL19 acts as a positive regulator of plant defense

    MicroRNAs: potential target for genome editing in plants for traits improvement

    No full text

    Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection

    No full text
    corecore