120 research outputs found

    Targeted brain delivery of methotrexate by glutathione PEGylated liposomes: How can the formulation make a difference?

    Get PDF
    The purpose of this study was to quantitatively investigate how conjugation of GSH to different liposomal formulations influence the brain delivery of methotrexate (MTX) in rats. GSH-PEG liposomal MTX based on hydrogenated soy phosphatidylcholine (HSPC) or egg yolk phosphatidylcholine (EYPC) and their corresponding PEG control liposomes were prepared. The brain delivery of MTX after intravenously administering free MTX, four liposomal formulations or free MTX + empty GSH-PEG-HSPC liposomes was evaluated by performing microdialysis in brain interstitial fluid and blood. Compared to free MTX with a steady-state unbound brain-to-plasma concentration ratio (Kp,uu) of 0.10, PEG-HSPC liposomes did not affect the brain uptake of MTX, while PEG-EYPC liposomes improved the uptake (Kp,uu 1.5, p Pharmacolog

    In Vivo Quantitative Understanding of PEGylated Liposome's Influence on Brain Delivery of Diphenhydramine

    Get PDF
    Despite the promising features of liposomes as brain drug delivery vehicles, it remains uncertain how they influence the brain uptake in vivo. In order to gain a better fundamental understanding of the interaction between liposomes and the blood–brain barrier (BBB), it is indispensable to test if liposomes affect drugs with different BBB transport properties (active influx or efflux) differently. The aim of this study was to quantitatively evaluate how PEGylated (PEG) liposomes influence brain delivery of diphenhydramine (DPH), a drug with active influx at the BBB, in rats. The brain uptake of DPH after 30 min intravenous infusion of free DPH, PEG liposomal DPH, or free DPH + empty PEG liposomes was compared by determining the unbound DPH concentrations in brain interstitial fluid and plasma with microdialysis. Regular blood samples were taken to measure total DPH concentrations in plasma. Free DPH was actively taken up into the brain time-dependently, with higher uptake at early time points followed by an unbound brain-to-plasma exposure ratio (Kp,uu) of 3.0. The encapsulation in PEG liposomes significantly decreased brain uptake of DPH, with a reduction of Kp,uu to 1.5 (p Kp,uu 2.3), and DPH was found to bind to the liposomes. This study showed that PEG liposomes decreased the brain delivery of DPH in a complex manner, contributing to the understanding of the intricate interactions between drug, liposomes, and the BBB.Pharmacolog

    Mechanistic Study on the Use of the l-Type Amino Acid Transporter 1 for Brain Intracellular Delivery of Ketoprofen via Prodrug: A Novel Approach Supporting the Development of Prodrugs for Intracellular Targets

    Get PDF
    l-Type amino acid transporter 1 (LAT1), selectively expressed at the blood–brain barrier (BBB) and brain parenchymal cells, mediates brain delivery of drugs and prodrugs such as l-dopa and gabapentin. Although knowledge about BBB transport of LAT1-utilizing prodrugs is available, there is a lack of quantitative information about brain intracellular delivery and influence of prodrugs on the transporter’s physiological state. We studied the LAT1-mediated intrabrain distribution of a recently developed prodrug of the cyclooxygenase inhibitor ketoprofen as well as its impact on transporter protein expression and function (i.e., amino acid exchange) using brain slice method in mice and rats. The intrabrain distribution of the prodrug was 16 times higher than that of ketoprofen. LAT1 involvement in brain cellular barrier uptake of the prodrug was confirmed, reflected by a higher unbound brain intracellular compared to brain extracellular fluid concentration. The prodrug did not alter LAT1 protein expression and amino acid exchange. Integration of derived parameters with previously performed in vivo pharmacokinetic study using the Combinatory Mapping Approach allowed to estimate the brain extra- and intracellular levels of unbound ketoprofen, prodrug, and released parent drug. The overall efficiency of plasma to brain intracellular delivery of prodrug-released ketoprofen was 11 times higher than after ketoprofen dosing. In summary, this study provides quantitative information supporting the use of the LAT1-mediated prodrug approach for enhanced brain delivery of drugs with intracellular targets.Pharmacolog

    Pharmacokinetic Modeling of Non-Linear Brain Distribution of Fluvoxamine in the Rat

    Get PDF
    Introduction. A pharmacokinetic (PK) model is proposed for estimation of total and free brain concentrations of fluvoxamine. Materials and methods. Rats with arterial and venous cannulas and a microdialysis probe in the frontal cortex received intravenous infusions of 1, 3.7 or 7.3 mg.kg j1 of fluvoxamine. Analysis. With increasing dose a disproportional increase in brain concentrations was observed. Th

    Alteration in P-glycoprotein Functionality Affects Intrabrain Distribution of Quinidine More Than Brain Entry—A Study in Rats Subjected to Status Epilepticus by Kainate

    Get PDF
    This study aimed to investigate the use of quinidine microdialysis to study potential changes in brain P-glycoprotein functionality after induction of status epilepticus (SE) by kainate. Rats were infused with 10 or 20 mg/kg quinidine over 30 min or 4 h. Plasma, brain extracellular fluid (brain ECF), and end-of-experiment total brain concentrations of quinidine were determined during 7 h after the start of the infusion. Effect of pretreatment with tariquidar (15 mg/kg, administered 30 min before the start of the quinidine infusion) on the brain distribution of quinidine was assessed. This approach was repeated in kainate-treated rats. Quinidine kinetics were analyzed with population modeling (NONMEM). The quinidine microdialysis assay clearly revealed differences in brain distribution upon changes in P-glycoprotein functionality by pre-administration of tariquidar, which resulted in a 7.2-fold increase in brain ECF and a 40-fold increase in total brain quinidine concentration. After kainate treatment alone, however, no difference in quinidine transport across the blood–brain barrier was found, but kainate-treated rats tended to have a lower total brain concentration but a higher brain ECF concentration of quinidine than saline-treated rats. This study did not provide evidence for the hypothesis that P-glycoprotein function at the blood–brain barrier is altered at 1 week after SE induction, but rather suggests that P-glycoprotein function might be altered at the brain parenchymal level

    On The Rate and Extent of Drug Delivery to the Brain

    Get PDF
    To define and differentiate relevant aspects of blood–brain barrier transport and distribution in order to aid research methodology in brain drug delivery. Pharmacokinetic parameters relative to the rate and extent of brain drug delivery are described and illustrated with relevant data, with special emphasis on the unbound, pharmacologically active drug molecule. Drug delivery to the brain can be comprehensively described using three parameters: Kp,uu (concentration ratio of unbound drug in brain to blood), CLin (permeability clearance into the brain), and Vu,brain (intra-brain distribution). The permeability of the blood–brain barrier is less relevant to drug action within the CNS than the extent of drug delivery, as most drugs are administered on a continuous (repeated) basis. Kp,uu can differ between CNS-active drugs by a factor of up to 150-fold. This range is much smaller than that for log BB ratios (Kp), which can differ by up to at least 2,000-fold, or for BBB permeabilities, which span an even larger range (up to at least 20,000-fold difference). Methods that measure the three parameters Kp,uu, CLin, and Vu,brain can give clinically valuable estimates of brain drug delivery in early drug discovery programmes

    Translational Modeling in Schizophrenia:Predicting Human Dopamine D2 Receptor Occupancy

    Get PDF
    OBJECTIVES: To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs.METHODS: A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses.RESULTS: Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol.CONCLUSIONS: The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.</p

    Diabetes and hypertension increase the placental and transcellular permeation of the lipophilic drug diazepam in pregnant women

    Get PDF
    Background: Previous studies carried out in our laboratories have demonstrated impaired drug permeation in diabetic animals. In this study the permeation of diazepam (after a single dose of 5 mg/day, administered intramuscularly) will be investigated in diabetic and hypertensive pregnant women.Methods: A total 75 pregnant women were divided into three groups: group 1 (healthy control, n = 31), group 2 (diabetic, n = 14) and group 3 (hypertensive, n = 30). Two sets of diazepam plasma concentrations were collected and measured (after the administration of the same dose of diazepam), before, during and after delivery. The first set of blood samples was taken from the mother (maternal venous plasma). The second set of samples was taken from the fetus (fetal umbilical venous and arterial plasma). In order to assess the effect of diabetes and hypertension on diazepam placental-permeation, the ratios of fetal to maternal blood concentrations were determined. Differences were considered statistically significant if p=0.05.Results: The diabetes and hypertension groups have 2-fold increase in the fetal umbilical-venous concentrations, compared to the maternal venous concentrations. Feto: maternal plasma-concentrations ratios were higher in diabetes (2.01 ± 1.10) and hypertension (2.26 ± 1.23) groups compared with control (1.30 ± 0.48) while, there was no difference in ratios between the diabetes and hypertension groups. Umbilical-cord arterial: venous ratios (within each group) were similar among all groups (control: 0.97 ± 0.32; hypertension: 1.08 ± 0.60 and diabetes: 1.02 ± 0.77).Conclusions: On line with our previous findings which demonstrate disturbed transcellular trafficking of lipophilic drugs in diabetes, this study shows significant increase in diazepam placental-permeation in diabetic and hypertensive pregnant women suggesting poor transcellular control of drug permeation and flux, and bigger exposure of the fetus to drug-placental transport
    corecore