8,234 research outputs found
Pultrusion process characterization
Pultrusion is a process through which high-modulus, lightweight composite structural members such as beams, truss components, stiffeners, etc., are manufactured. The pultrusion process, though a well-developed processing art, lacks a fundamental scientific understanding. The objective here was to determine, both experimentally and analytically, the process parameters most important in characterizing and optimizing the pultrusion of uniaxial fibers. The effects of process parameter interactions were experimentally examined as a function of the pultruded product properties. A numerical description based on these experimental results was developed. An analytical model of the pultrusion process was also developed. The objective of the modeling effort was the formulation of a two-dimensional heat transfer model and development of solutions for the governing differential equations using the finite element method
Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors
A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code
Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field
The study was funded by Department of Agriculture and Food through the Research Stimulus Fund Programme (Grant RSF 06383) in collaboration with the Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Ireland.peer-reviewedOver-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N + N2-N) mole fractions were measured in situ with a push–pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 μg kg−1 d−1, respectively. Estimated N2O-N/(N2O-N + N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L−1) than no cover crop (0.90 mg L−1) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances
Aesthetic Worlds: Rimbaud, Williams and Baroque Form
The sense of form that provides the modern poet with a unique experience of the literary object has been crucial to various attempts to compare poetry to other cultural activities. In maintaining similar conceptions of the relationship between poetry and painting, Arthur Rimbaud and W. C. Williams establish a common basis for interpreting their creative work. And yet their poetry is more crucially concerned with the sudden emergence of visible "worlds" containing verbal objects that integrate a new kind of literary text. This paper discusses the emergence of "aesthetic worlds" in the work of both poets and then examines how a common concern with Baroque form unites them in the phenomenological task of overcoming Cartesian dualism
Stations, trains and small-world networks
The clustering coefficient, path length and average vertex degree of two
urban train line networks have been calculated. The results are compared with
theoretical predictions for appropriate random bipartite graphs. They have also
been compared with one another to investigate the effect of architecture on the
small-world properties.Comment: 6 pages, prepared in RevTe
Ka-band Ga-As FET noise receiver/device development
The development of technology for a 30 GHz low noise receiver utilizing GaAs FET devices exclusively is discussed. This program required single and dual-gate FET devices, low noise FET amplifiers, dual-gate FET mixers, and FET oscillators operating at Ka-band frequencies. A 0.25 micrometer gate FET device, developed with a minimum noise figure of 3.3 dB at 29 GHz and an associated gain of 7.4 dB, was used to fabricate a 3-stage amplifier with a minimum noise figure and associated gain of 4.4 dB and 17 dB, respectively. The 1-dB gain bandwidth of this amplifier extended from below 26.5 GHz to 30.5 GHz. A dual-gate mixer with a 2 dB conversion loss and a minimum noise figure of 10 dB at 29 GHz as well as a dielectric resonator stabilized FET oscillator at 25 GHz for the receiver L0. From these components, a hybrid microwave integrated circuit receiver was constructed which demonstrates a minimum single-side band noise figure of 4.6 dB at 29 GHz with a conversion gain of 17 dB. The output power at the 1-dB gain compression point was -5 dBm
Giant gravitons in AdS/CFT (I): matrix model and back reaction
In this article we study giant gravitons in the framework of AdS/CFT
correspondence. First, we show how to describe these configurations in the CFT
side using a matrix model. In this picture, giant gravitons are realized as
single excitations high above a Fermi sea, or as deep holes into it. Then, we
give a prescription to define quasi-classical states and we recover the known
classical solution associated to the CFT dual of a giant graviton that grows in
AdS. Second, we use the AdS/CFT dictionary to obtain the supergravity boundary
stress tensor of a general state and to holographically reconstruct the bulk
metric, obtaining the back reaction of space-time. We find that the space-time
response to all the supersymmetric giant graviton states is of the same form,
producing the singular BPS limit of the three charge Reissner-Nordstr\"om-AdS
black holes. While computing the boundary stress tensor, we comment on the
finite counterterm recently introduced by Liu and Sabra, and connect it to a
scheme-dependent conformal anomaly.Comment: 28 pages, JHEP3 class. v2: typos corrected and references adde
A GGA plus U approach to effective electronic correlations in thiolate-ligated iron-oxo (IV) porphyrin
High-valent oxo-metal complexes exhibit correlated electronic behavior on dense, low-lying electronic state manifolds, presenting challenging systems for electronic structure methods. Among these species, the iron-oxo (IV) porphyrin denoted Compound I occupies a privileged position, serving a broad spectrum of catalytic roles. The most reactive members of this family bear a thiolate axial ligand, exhibiting high activity toward molecular oxygen activation and substrate oxidation. The default approach to such systems has entailed the use of hybrid density functionals or multi-configurational/multireference methods to treat electronic correlation. An alternative approach is presented based on the GGA+U approximation to density functional theory, in which a generalized gradient approximation (GGA) functional is supplemented with a localization correction to treat on-site correlation as inspired by the Hubbard model. The electronic structure of thiolate-ligated iron-oxo (IV) porphyrin and corresponding Coulomb repulsion U are determined both empirically and self-consistently, yielding spin-distributions, state level splittings, and electronic densities of states consistent with prior hybrid functional calculations. Comparison of this detailed electronic structure with model Hamiltonian calculations suggests that the localized 3d iron moments induce correlation in the surrounding electron gas, strengthening local moment formation. This behavior is analogous to strongly correlated electronic systems such as Mott insulators, in which the GGA+U scheme serves as an effective single-particle representation for the full, correlated many-body problem
Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket
- …
