5,880 research outputs found

    Embolization in an adrenocortical carcinoma as palliative therapy

    Get PDF
    Background: With an annual incidence of 0.2% of new cases per 100,000 inhabitants, adrenocortical carcinoma is rare. In advanced tumor only palliative treatment modalities are practicable. Because of scarcity of the tumor, standard treatment has not been defined. The decision on therapy frequently depends on the individual situation. Tumor embolization and chemotherapy are amongst the possible options. Patient and Methods: We report on a case of a 32-year-old female patient with a large-volume hormonally active adrenocortical carcinoma and hematogenous liver metastases. This carcinoma was confirmed histologically by means of liver biopsy. Owing to the large tumor extent and metastatic spreading and also in view of the poor general condition of the patient, curative surgical therapy was not possible. For this reason, a local approach was chosen primarily with transarterial tumor embolization at the capillary level. Systemic chemotherapy was given afterwards. Results: Improvement of the patient's general condition, especially the pronounced pain symptoms, could be achieved for a short time by the embolization: both, the patient's clinical condition and the laboratory test parameters improved. However, a rapid tumor progression occured under chemotherapy, which was started after embolization. Conclusion: In advanced adrenocortical carcinoma, tumor embolization can lead to a stabilization of the disease and improvement of the symptoms as appraised by palliative criteria in some patients

    Construction of a Plasmodium falciparum Rab-interactome identifies CK1 and PKA as Rab-effector kinases in malaria parasites

    Get PDF
    Background information The pathology causing stages of the human malaria parasite Plasmodium falciparum reside within red blood cells that are devoid of any regulated transport system. The parasite, therefore, is entirely responsible for mediating vesicular transport within itself and in the infected erythrocyte cytoplasm, and it does so in part via its family of 11 Rab GTPases. Putative functions have been ascribed to Plasmodium Rabs due to their homology with Rabs of yeast, particularly with Saccharomyces that has an equivalent number of rab/ypt genes and where analyses of Ypt function is well characterized. Results Rabs are important regulators of vesicular traffic due to their capacity to recruit specific effectors. In order to identify P. falciparum Rab (PfRab) effectors, we first built a Ypt-interactome by exploiting genetic and physical binding data available at the Saccharomyces genome database (SGD). We then constructed a PfRab-interactome using putative parasite Rab-effectors identified by homology to Ypt-effectors. We demonstrate its potential by wet-bench testing three predictions; that casein kinase-1 (PfCK1) is a specific Rab5B interacting protein and that the catalytic subunit of cAMP-dependent protein kinase A (PfPKA-C) is a PfRab5A and PfRab7 effector. Conclusions The establishment of a shared set of physical Ypt/PfRab-effector proteins sheds light on a core set Plasmodium Rab-interactants shared with yeast. The PfRab-interactome should benefit vesicular trafficking studies in malaria parasites. The recruitment of PfCK1 to PfRab5B+ and PfPKA-C to PfRab5A+ and PfRab7+ vesicles, respectively, suggests that PfRab-recruited kinases potentially play a role in early and late endosome function in malaria parasites

    B=3 Tetrahedrally Symmetric Solitons in the Chiral Quark Soliton Model

    Get PDF
    In this paper, B=3 soliton solutions with tetrahedral symmetry are obtained numerically in the chiral quark soliton model using the rational map ansatz. The solution exhibits a triply degenerate bound spectrum of the quark orbits in the background of tetrahedrally symmetric pion field configuration. The corresponding baryon density is tetrahedral in shape. Our numerical technique is independent on the baryon number and its application to B4B \geq 4 is straightforward.Comment: 4 pages, 3 figure

    Multi-Magnon Scattering in the Ferromagnetic XXX-Model with Inhomogeneities

    Full text link
    We determine the transition amplitude for multi-magnon scattering induced through an inhomogeneous distribution of the coupling constant in the ferromagnetic XXX-model. The two and three particle amplitudes are explicitely calculated at small momenta. This suggests a rather plausible conjecture also for a formula of the general n-particle amplitude.Comment: 21 pages, latex, no figure

    Black hole entropy for the general area spectrum

    Full text link
    We consider the possibility that the horizon area is expressed by the general area spectrum in loop quantum gravity and calculate the black hole entropy by counting the degrees of freedom in spin-network states related to its area. Although the general area spectrum has a complex expression, we succeeded in obtaining the result that the black hole entropy is proportional to its area as in previous works where the simplified area formula has been used. This gives new values for the Barbero-Immirzi parameter (γ=0.5802...or0.7847...\gamma =0.5802... \mathrm{or} 0.7847...) which are larger than that of previous works.Comment: 5 page

    The electric dipole moment of the neutron from 2+1 flavor lattice QCD

    Get PDF
    We compute the electric dipole moment d_n of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing theta term. The latter is rotated into the pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle theta is taken to be purely imaginary. The physical value of d_n is obtained by analytic continuation. We find d_n = -3.8(2)(9) x 10^{-16} [theta e cm], which, when combined with the experimental limit on d_n, leads to the upper bound theta < 7.6 x 10^{-11}.Comment: 12 pages, 8 figures, matches PRL published versio

    Temperature perturbation model of the opto-galvanic effect in CO2-laser discharges

    Get PDF
    A detailed discharge model of the opto-galvanic effect in molecular laser gas mixtures is developed based on the temperature perturbation or discharge cooling mechanism of Smith and Brooks (1979). Excellent agreement between the model and experimental results in CO2 laser gas mixtures is obtained. The model should be applicable to other molecular systems where the OGE is being used for laser stabilisation and as a spectroscopic tool

    Composite Skyrme Model with Vector Mesons

    Full text link
    We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey, introducing vector mesons in a chiral Lagrangian. We calculate the static properties of baryons and compare with results obtained from models without vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.

    Exact One Loop Running Couplings in the Standard Model

    Full text link
    Taking the dominant couplings in the standard model to be the quartic scalar coupling, the Yukawa coupling of the top quark, and the SU(3) gauge coupling, we consider their associated running couplings to one loop order. Despite the non-linear nature of the differential equations governing these functions, we show that they can be solved exactly. The nature of these solutions is discussed and their singularity structure is examined. It is shown that for a sufficiently small Higgs mass, the quartic scalar coupling decreases with increasing energy scale and becomes negative, indicative of vacuum instability. This behavior changes for a Higgs mass greater than 168 GeV, beyond which this couplant increases with increasing energy scales and becomes singular prior to the ultraviolet (UV) pole of the Yukawa coupling. Upper and lower bounds on the Higgs mass corresponding to new physics at the TeV scale are obtained and compare favourably with the numerical results of the one-loop and two-loop analyses with inclusion of electroweak couplings.Comment: 5 pages, LaTeX, additional references and further discussion in this version. Accepted for publication in Canadian Journal of Physic
    corecore