1,503 research outputs found

    Bloch points in nanostrips

    Get PDF
    Complex magnetic materials hosting topologically non-trivial particle-like objects such as skyrmions are under intensive research and could fundamentally change the way we store and process data. One important class of materials are helimagnetic materials with Dzyaloshinskii-Moriya interaction. Recently, it was demonstrated that nanodisks consisting of two layers with opposite chirality can host a single stable Bloch point of two different types at the interface between the layers. Using micromagnetic simulations we show that FeGe nanostrips consisting of two layers with opposite chirality can host multiple coexisting Bloch points in an arbitrary combination of the two different types. We show that the number of Bloch points that can simultaneously coexist depends on the strip geometry and the type of the individual Bloch points. Our simulation results allow us to predict strip geometries suitable for an arbitrary number of Bloch points. We show an example of an 80-Bloch-point configuration verifying the prediction

    Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media

    Get PDF
    The thermo-viscous fingering instability associated with miscible displacement through a porous medium is studied numerically, motivated by applications in upstream oil industries especially enhanced oil recovery (EOR) via wells using hot water flooding and steam flooding. The main innovative aspect of this study is the inclusion of the effects of viscous dissipation on thermal viscous fingering instability. An Arrhenius equation of state is employed for describing the dependency of viscosity on temperature. The normalized conservation equations are solved with the finite element computational fluid dynamics code, COMSOL (Version 5) in which glycerol is considered as the solute and water as the solvent and the two-phase Darcy model employed (which couples the study Darcy flow equation with the time-dependent convection-diffusion equation for the concentration). The progress of finger patterns is studied using concentration and temperature contours, transversely averaged profiles, mixing length and sweep efficiency. The sweep efficiency is a property widely used in industry to characterize how effective is displacement and it can be defined as the ratio of the volume of displaced fluid to the total volume of available fluid in a porous medium in the displacement process. The effects of Lewis number, Brinkman number and thermal lag coefficient on this instability are examined in detail. The results indicate that increasing viscous dissipation generates significant enhancement in the temperature and a marked reduction in viscosity especially in the displaced fluid (high viscous phase). Therefore, the mobility ratio is reduced, and the flow becomes more stable in the presence of viscous dissipation

    Microcrystalline Cellulose (MCC) from Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment

    Get PDF
    In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity

    Micro structure and Fractography of Multiwalled Carbon Nanotube Reinforced Unsaturated Polyester Nanocomposites

    Get PDF
    In this study unsaturated polyester resin (UPR) was reinforced with different concentration of predispersed multiwalled carbon nanotube (MWCNT). The rheology, structural analysis, fracture behavior, morphology, and thermal analysis of nanocomposites were carried out as a function of MWCNT content. Shear thinning behavior exhibited distinguishable dispersion quality of 0.3 wt% MWCNT in UPR matrix. Structural analysis reveals that MWCNT enhanced the nucleation of nanocomposites. The crystallinity of nanocomposites was increased by 71% after incorporation of 0.3 wt% MWCNT. Bending strength (BS) and bending modulus (BM) of nanocomposites were increased as well as 0.3 wt% MWCNT exhibited crack shielding in nanocomposites.The glass transition (Tg) and melting transition (Tm) of nanocomposites was increased by 68C and 108C respectively as compare to neat UPR. Additionally thermal stability of 0.3 wt% MWCNT incorporated nanocomposites was significantly improved as compare to UPR and nanocomposites which contained 0.1 and 0.5 wt% MWCN

    Controlling stable Bloch points with electric currents

    Get PDF
    The Bloch point is a point singularity in the magnetisation configuration, where the magnetisation vanishes. It can exist as an equilibrium configuration and plays an important role in many magnetisation reversal processes. In the present work, we focus on manipulating Bloch points in a system that can host stable Bloch points—a two-layer FeGe nanostrip with opposite chirality of the two layers. We drive Bloch points using spin-transfer torques and find that Bloch points can move collectively without any Hall effect and report that Bloch points are repelled from the sample boundaries and each other. We study pinning of Bloch points at wedge-shaped constrictions (notches) in the nanostrip and demonstrate that arrays of Bloch points can be moved past a series of notches in a controlled manner by applying consecutive current pulses of different strength. Finally, we simulate a T-shaped geometry and demonstrate that a Bloch point can be moved along different paths by applying current between suitable strip ends

    Lattice Discretization in Quantum Scattering

    Get PDF
    The utility of lattice discretization technique is demonstrated for solving nonrelativistic quantum scattering problems and specially for the treatment of ultraviolet divergences in these problems with some potentials singular at the origin in two and three space dimensions. This shows that lattice discretization technique could be a useful tool for the numerical solution of scattering problems in general. The approach is illustrated in the case of the Dirac delta function potential.Comment: 9 page

    Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

    Get PDF
    In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusionn followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite

    PREPARATION AND CHARACTERIZATION OF LOW MOLECULAR WEIGHT CHITOSAN WITH DIFFERENT DEGREES OF DEACETYLATION BY THE ACID HYDROLYSIS METHOD

    Get PDF
    Objective: The objective of this research is to prepare Low Molecular Weight Chitosan (LMWC) by the acid hydrolysis method, using dilute hydrochloric acid (2M). LMWC has superior properties compared to the High Molecular Weight Chitosan (HMWC), especially in terms of water solubility, antibacterial and antifungal properties. These could open new potential applications for LMWC in sectors such as the cosmetics, food, and pharmaceutical industries. Methods: In this work, the acid hydrolysis method was used to produce LMWC with different molecular weights starting from 500 kDa and 93% degree of deacetylations (DDA). The molecular weights of the produced grades were determined by applying Mark-Houwink equation while the %DDA was determined and verified by the use of the 1st derivative UV method and 1HNMR method, respectively. The depolymerization reactions were carried out with different time intervals to produce totally deacetylated LMWC of 30 kDa, 15 kDa, and 7.5 kDa. The LMWC was characterized by FTIR, XRD, and DSC to evaluate the functionality, microstructure and thermal properties. Results: The FTIR spectra revealed that there is no significant difference in the main skeletal structure of the LMWC and HMWC. On the other hand, the XRD and DSC results showed that the LMWC of different molecular weights and degrees of deacetylation are of semi-crystalline structure, similar to the HMWC. Conclusion: The obtained results showed that the used acid hydrolysis procedure can produce LMWC grades of desired specifications, yields, and quality which are suitable for use in different applications

    Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics

    Full text link
    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an important observation that for peristaltic transport of a couple stress fluid during free pumping when the couple stress effect of the fluid/Darcy permeability of the medium, flow reversal can be controlled to a considerable extent. Also by reducing the permeability it is possible to avoid the occurrence of trapping phenomenon
    • …
    corecore