105 research outputs found

    A magyar kiejtés tanítása

    Get PDF

    Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction

    Get PDF
    Heart failure (HF) is one of the leading causes of death worldwide and has reached epidemic proportions in most industrialized nations. Despite major improvements in the treatment and management of the disease, the prognosis for patients with HF remains poor with approximately only half of patients surviving for 5 years or longer after diagnosis. The poor prognosis of HF patients is in part because of irreparable damage to cardiac tissue and concomitant maladaptive changes associated with the disease. Cell-based therapies may have the potential to transform the treatment and prognosis of HF through regeneration or repair of damaged cardiac tissue. Accordingly, numerous phase I and II randomized clinical trials have tested the clinical benefits of cell transplant, mostly autologous bone marrow–derived mononuclear cells, in patients with HF, ischemic heart disease, and acute myocardial infarction. Although many of these trials were relatively small, meta-analyses of cell-based therapies have attempted to apply rigorous statistical methodology to assess the potential clinical benefits of the intervention. As a prelude to larger phase III trials, meta-analyses, therefore, remain the obvious means of evaluating the available clinical evidence. Here, we review the different meta-analyses of randomized clinical trials that evaluate the safety and potential beneficial effect of cell therapies in HF and acute myocardial infarction spanning nearly 2 decades since the first pioneering trials were conducted

    Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study

    Get PDF
    Heart failure following acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Our previous observation that injection of apoptotic peripheral blood mononuclear cell (PBMC) suspensions was able to restore long-term cardiac function in a rat AMI model prompted us to study the effect of soluble factors derived from apoptotic PBMC on ventricular remodelling after AMI. Cell culture supernatants derived from irradiated apoptotic peripheral blood mononuclear cells (APOSEC) were collected and injected as a single dose intravenously after myocardial infarction in an experimental AMI rat model and in a porcine closed chest reperfused AMI model. Magnetic resonance imaging (MRI) and echocardiography were used to quantitate cardiac function. Analysis of soluble factors present in APOSEC was performed by enzyme-linked immunosorbent assay (ELISA) and activation of signalling cascades in human cardiomyocytes by APOSEC in vitro was studied by immunoblot analysis. Intravenous administration of a single dose of APOSEC resulted in a reduction of scar tissue formation in both AMI models. In the porcine reperfused AMI model, APOSEC led to higher values of ejection fraction (57.0 vs. 40.5%, p < 0.01), a better cardiac output (4.0 vs. 2.4 l/min, p < 0.001) and a reduced extent of infarction size (12.6 vs. 6.9%, p < 0.02) as determined by MRI. Exposure of primary human cardiac myocytes with APOSEC in vitro triggered the activation of pro-survival signalling-cascades (AKT, Erk1/2, CREB, c-Jun), increased anti-apoptotic gene products (Bcl-2, BAG1) and protected them from starvation-induced cell death. Intravenous infusion of culture supernatant of apoptotic PBMC attenuates myocardial remodelling in experimental AMI models. This effect is probably due to the activation of pro-survival signalling cascades in the affected cardiomyocytes

    Interconnections of Reactive Oxygen Species Homeostasis and Circadian Rhythm in Neurospora crassa.

    Get PDF
    Abstract Significance: Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mechanisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels. Recent Advances: The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the other hand, multiple data indicate that ROS affect the molecular oscillator. Critical Issues: Increasing evidence suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators with timekeeping machineries based on the classical transcription-translation feedback mechanism. Future Directions: Further investigations are needed to clarify how the different layers of the bidirectional interactions between ROS homeostasis and circadian regulation are interconnected. Antioxid. Redox Signal. 00, 000-000

    Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging

    Get PDF
    Cardiac magnetic resonance imaging (CMR) with adenosine-stress myocardial perfusion is gaining importance for the detection and quantification of coronary artery disease (CAD). However, there is little knowledge about patients with CMR-detected ischemia, but having no relevant stenosis as seen on coronary angiography (CA). The aims of our study were to characterize these patients by CMR and CA and evaluate correlations and potential reasons for the ischemic findings. 73 patients with an indication for CA were first scanned on a 1.5T whole-body CMR-scanner including adenosine-stress first-pass perfusion. The images were analyzed by two independent investigators for myocardial perfusion which was classified as subendocardial ischemia (n = 22), no perfusion deficit (n = 27, control 1), or more than subendocardial ischemia (n = 24, control 2). All patients underwent CA, and a highly significant correlation between the classification of CMR perfusion deficit and the degree of coronary luminal narrowing was found. For quantification of coronary blood flow, corrected Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) was evaluated for the left anterior descending (LAD), circumflex (LCX) and right coronary artery (RCA). The main result was that corrected TFC in all coronaries was significantly increased in study patients compared to both control 1 and to control 2 patients. Study patients had hypertension or diabetes more often than control 1 patients. In conclusion, patients with CMR detected subendocardial ischemia have prolonged coronary blood flow. In connection with normal resting flow values in CAD, this supports the hypothesis of underlying coronary microvascular impairment. CMR stress perfusion differentiates non-invasively between this entity and relevant CAD

    Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction

    Get PDF
    Congestive heart failure developing after acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Clinical trials of cell-based therapy after AMI evidenced only a moderate benefit. We could show previously that suspensions of apoptotic peripheral blood mononuclear cells (PBMC) are able to reduce myocardial damage in a rat model of AMI. Here we experimentally examined the biochemical mechanisms involved in preventing ventricular remodelling and preserving cardiac function after AMI. Cell suspensions of apoptotic cells were injected intravenously or intramyocardially after experimental AMI induced by coronary artery ligation in rats. Administration of cell culture medium or viable PBMC served as controls. Immunohistological analysis was performed to analyse the cellular infiltrate in the ischaemic myocardium. Cardiac function was quantified by echocardiography. Planimetry of the infarcted hearts showed a significant reduction of infarction size and an improvement of post AMI remodelling in rats treated with suspensions of apoptotic PBMC (injected either intravenously or intramoycardially). Moreover, these hearts evidenced enhanced homing of macrophages and cells staining positive for c-kit, FLK-1, IGF-I and FGF-2 as compared to controls. A major finding in this study further was that the ratio of elastic and collagenous fibres within the scar tissue was altered in a favourable fashion in rats injected with apoptotic cells. Intravenous or intramyocardial injection of apoptotic cell suspensions results in attenuation of myocardial remodelling after experimental AMI, preserves left ventricular function, increases homing of regenerative cells and alters the composition of cardiac scar tissue. The higher expression of elastic fibres provides passive energy to the cardiac scar tissue and results in prevention of ventricular remodelling
    corecore