254 research outputs found

    Effect of the measurement on the decay rate of a quantum system

    Get PDF
    We investigated the electron tunneling out of a quantum dot in the presence of a continuous monitoring by a detector. It is shown that the Schr\"odinger equation for the whole system can be reduced to new Bloch-type rate equations describing the time-development of the detector and the measured system at once. Using these equations we find that the continuous measurement of the unstable system does not affect its exponential decay, exp(Γt)\exp (-\Gamma t), contrary to expectations based on the Quantum Zeno effect . However, the width of the energy distribution of the tunneling electron is no more Γ\Gamma, but increases due to the decoherence, generated by the detector.Comment: Additional explanations are added. Accepted for publications in Phys. Rev. Let

    Resonant scattering on impurities in the Quantum Hall Effect

    Full text link
    We develop a new approach to carrier transport between the edge states via resonant scattering on impurities, which is applicable both for short and long range impurities. A detailed analysis of resonant scattering on a single impurity is performed. The results are used for study of the inter-edge transport by multiple resonant hopping via different impurities' sites. It is shown that the total conductance can be found from an effective Schroedinger equation with constant diagonal matrix elements in the Hamiltonian, where the complex non-diagonal matrix elements are the amplitudes of a carrier hopping between different impurities. It is explicitly demonstrated how the complex phase leads to Aharonov-Bohm oscillations in the total conductance. Neglecting the contribution of self-crossing resonant-percolation trajectories, one finds that the inter-edge carrier transport is similar to propagation in one-dimensional system with off-diagonal disorder. We demonstrated that each Landau band has an extended state EˉN\bar E_N, while all other states are localized. The localization length behaves as LN1(E)(EEˉN)2L_N^{-1}(E)\sim (E-\bar E_N)^2.Comment: RevTex 41 pages; 3 Postscript figure on request; Final version accepted for publication in Phys. Rev. B. A new section added contained a comparison with other method

    Delocalization in the Anderson model due to a local measurement

    Full text link
    We study a one-dimensional Anderson model in which one site interacts with a detector monitoring the occupation of that site. We demonstrate that such an interaction, no matter how weak, leads to total delocalization of the Anderson model, and we discuss the experimental consequencesComment: 4 pages, additional explanations added, to appear in Phys. Rev. Let

    Resonant Tunneling through Linear Arrays of Quantum Dots

    Full text link
    We theoretically investigate resonant tunneling through a linear array of quantum dots with subsequent tunnel coupling. We consider two limiting cases: (i) strong Coulomb blockade, where only one extra electron can be present in the array (ii) limit of almost non-interacting electrons. We develop a density matrix description that incorporates the coupling of the dots to reservoirs. We analyze in detail the dependence of the stationary current on the electron energies, tunnel matrix elements and rates, and on the number of dots. We describe interaction and localization effects on the resonant current. We analyze the applicability of the approximation of independent conduction channels. We find that this approximation is not valid when at least one of the tunnel rates to the leads is comparable to the energy splitting of the states in the array. In this case the interference of conduction processes through different channels suppresses the current.Comment: 12 pages, 5 figure

    Relativistic approaches to structure functions of nuclei

    Get PDF
    We employ a propagator technique to derive a new relativistic 1/\qq expansion of the structure function of a nucleus, composed of point-nucleons. We exploit non-relativistic features of low-momentum nucleons in the target and only treat relativistically the nucleon after absorption of a high-momentum virtual photon. The new series permits a 3-dimensional reduction of each term and a formal summation of all Final State Interaction terms. We then show that a relativistic structure function can be obtained from its non-relativistic analog by a mere change of a scaling variable and an addition of an energy shift. We compare the obtained result with an ad hoc generalized Gersch-Rodriguez-Smith theory, previously used in computations of nuclear structure functions.Comment: Comparison with data is included, to be published in PRC, Feb. 200

    Influence of measurement on the life-time and the line-width of unstable systems

    Get PDF
    We investigate the quantum Zeno effect in the case of electron tunneling out of a quantum dot in the presence of continuous monitoring by a detector. It is shown that the Schr\"odinger equation for the whole system can be reduced to Bloch-type rate equations describing the combined time-development of the detector and the measured system. Using these equations we find that continuous measurement of the unstable system does not affect its exponential decay to a reservoir with a constant density of states. The width of the energy distribution of the tunneling electron, however, is not equal to the inverse life-time -- it increases due to the decoherence generated by the detector. We extend the analysis to the case of a reservoir described by an energy dependent density of states, and we show that continuous measurement of such quantum systems affects both the exponential decay rate and the energy distribution. The decay does not always slow down, but might be accelerated. The energy distribution of the tunneling electron may reveal the lines invisible before the measurement.Comment: 13 pages, 8 figures, comments and references added; to appear in Phys. Rev.

    Quantum coherence and entanglement induced by the continuum between distant localized states

    Full text link
    It is demonstrated that two distant quantum wells separated by a reservoir with a continuous spectrum can possess bound eigenstates embedded in the continuum. These represent a linear superposition of quantum states localized in the wells. We show that such a state can be isolated in the course of free evolution from any initial state by a null-result measurement in the reservoir. The latter might not be necessary in the many-body case. The resulting superposition is regulated by ratio of couplings between the wells and the reservoir. In particular, one can lock the system in one of the wells by enhancing this ratio. By tuning parameters of the quantum wells, many-body entangled states in distant wells can be produced through interactions and statistics.Comment: small modifications, one reference is added, to appear in Phys. Rev.

    Quantum Nondemolition Measurement of a Kicked Qubit

    Full text link
    We propose a quantum nondemolition measurement using a kicked two-state system (qubit). By tuning the waiting time between kicks to be the qubit oscillation period, the kicking apparatus performs a nondemolition measurement. While dephasing is unavoidable, the nondemolition measurement can (1) slow relaxation of diagonal density matrix elements, (2) avoid detector back-action, and (3) allow for a large signal-to-noise ratio. Deviations from the ideal behavior are studied by allowing for detuning of the waiting time, as well as finite-time, noisy pulses. The scheme is illustrated with a double-dot qubit measured by a gate-pulsed quantum point contact.Comment: 7 pages, 1 figur

    The neutron magnetic form factor G_M^n(Q^2) from Quasi-Elastic inclusive scattering data on D and 4He

    Get PDF
    We analyze cross sections for Quasi-Elastic inclusive scattering of electrons on nuclei and show that the observed isolated peaks for relatively low Q2Q^2 are unique for the lightest targets. Focusing in particular on D and 4^4He, we investigate in two ways to what measure the above peaks can be allocated to nucleon-elastic processes. We first compute approximate upper limits for the nucleon-inelastic background in the Quasi-Elastic region due to inclusive Δ\Delta excitation, and find those to be small. Far more precise is a semi-phenomenological approach, where the dominance of nucleon-elastic processes is translated into a set of stringent requirements. We show that those are very well fulfilled for recent D data, and to a somewhat lesser extent for older D and 4^4He data. With knowledge of GE,MpG_{E,M}^p and information on GEnG_E^n, we then extract GMnG_M^n and find agreement with values obtained by alternative methods. We discuss the sensitivity of the extraction method and mention future applications.Comment: 21 pages, 9 figures, revtex4, revised version, Phys. Rev. C, in pres
    corecore