814 research outputs found

    The pulsed electron deposition technique for biomedical applications: A review

    Get PDF
    The "pulsed electron deposition" (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine

    Deterministic and stochastic chaos characterize laboratory earthquakes

    Get PDF
    We analyze frictional motion for a laboratory fault as it passes through the stability transition from stable sliding to unstable motion. We study frictional stick-slip events, which are the lab equivalent of earthquakes, via dynamical system tools in order to retrieve information on the underlying dynamics and to assess whether there are dynamical changes associated with the transition from stable to unstable motion. We find that the seismic cycle exhibits characteristics of a low-dimensional system with average dimension similar to that of natural slow earthquakes (<5). We also investigate local properties of the attractor and find maximum instantaneous dimension ≳10, indicating that some regions of the phase space require a high number of degrees of freedom (dofs). Our analysis does not preclude deterministic chaos, but the lab seismic cycle is best explained by a random attractor based on rate- and state-dependent friction whose dynamics is stochastically perturbed. We find that minimal variations of 0.05% of the shear and normal stresses applied to the experimental fault influence the large-scale dynamics and the recurrence time of labquakes. While complicated motion including period doubling is observed near the stability transition, even in the fully unstable regime we do not observe truly periodic behavior. Friction's nonlinear nature amplifies small scale perturbations, reducing the predictability of the otherwise periodic macroscopic dynamics. As applied to tectonic faults, our results imply that even small stress field fluctuations (≲150 kPa) can induce coefficient of variations in earthquake repeat time of a few percent. Moreover, these perturbations can drive an otherwise fast-slipping fault, close to the critical stability condition, into a mixed behavior involving slow and fast ruptures

    Textile chemical sensors based on conductive polymers for the analysis of sweat

    Get PDF
    Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic

    Evaluation of the Antioxidant Capacity of Fruit Juices by Two Original Analytical Methods

    Get PDF
    Two analytical methods previously developed by our groups were employed to estimate the antioxidant capacity of commercial fruit juices. The electrochemical method, which measures the scavenging activity of antioxidants towards OH radicals generated by both hydrogen peroxide photolysis and Fenton’s reaction, is based on the recovery of the cyclic voltametric response of the redox probe Ru(NH3)63+ at a Glassy Carbon electrode modified with a thin film of an insulating polyphenol, in the presence of compounds with antioxidant properties. The values of the antioxidant capacity of the fruit juices are expressed as vitamin C equivalents/L. The chromatographic method is based on the generation of OH radicals via Fenton’s reaction in order to test the inhibition of their formation in the presence of antioxidant compounds by monitoring salicylate aromatic hydroxylation derivatives as markers of •OH production, by means of HPLC coupled to coulometric detection. The results are expressed as the percentage of inhibition of •OH production in the presence of the tested juice compared to the control sample. When OH radicals are produced by Fenton’s reaction, the antioxidant capacity of the juices, estimated by both methods, displays an analogous trend, confirming that they can be considered an alternative for measuring the ability of antioxidants to block OH radical formation

    Organic Electrochemical Transistors as Versatile Analytical Potentiometric Sensors

    Get PDF
    Potentiometric transduction is an important tool of analytical chemistry to record chemical signals, but some constraints in the miniaturization and low-cost fabrication of the reference electrode are a bottleneck in the realization of more-advanced devices such as wearable and lab-on-a-chip sensors. Here, an organic electrochemical transistor (OECT) has been designed with an alternative architecture that allows to record the potentiometric signals of gate electrodes, which have been chemically modified to obtain Ag/AgnX interfaces (X = Cl−, Br−, I−, and S2−), without the use of a reference electrode. When the OECT is immersed in a sample solution, it reaches an equilibrium state, because PEDOT:PSS exchanges charges with the electrolyte until its Fermi level is aligned to the one of Ag/AgnX. The latter is controlled by Xn− concentration in the solution. As a consequence, in this spontaneous process, the conductivity of PEDOT:PSS changes with the electrochemical potential of the modified gate electrode without any external bias. The sensor works by applying only a fixed drain current or drain voltage and thus the OECT sensor operates with just two terminals. It is also demonstrated that, in this configuration, gate potential values extracted from the drain current are in good agreement with the ones measured with respect to a reference electrode being perfectly correlated (linear slope equal to 1.00 ± 0.03). In the case of the sulfide anion, the OECT performance overcomes the limit represented by the Nernst equation, with a sensitivity of 0.52 V decade−1. The presented results suggest that OECTs could be a viable option to fabricate advanced sensors based on potentiometric transduction

    Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle

    Get PDF
    Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic

    A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes

    Get PDF
    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95 % ee at 25 °C), and high productivity (more than 3800 h−1) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products
    • …
    corecore