418 research outputs found

    PHSkb: A knowledgebase to support notifiable disease surveillance

    Get PDF
    BACKGROUND: Notifiable disease surveillance in the United States is predominantly a passive process that is often limited by poor timeliness and low sensitivity. Interoperable tools are needed that interact more seamlessly with existing clinical and laboratory data to improve notifiable disease surveillance. DESCRIPTION: The Public Health Surveillance Knowledgebase (PHSkb™) is a computer database designed to provide quick, easy access to domain knowledge regarding notifiable diseases and conditions in the United States. The database was developed using Protégé ontology and knowledgebase editing software. Data regarding the notifiable disease domain were collected via a comprehensive review of state health department websites and integrated with other information used to support the National Notifiable Diseases Surveillance System (NNDSS). Domain concepts were harmonized, wherever possible, to existing vocabulary standards. The knowledgebase can be used: 1) as the basis for a controlled vocabulary of reportable conditions needed for data aggregation in public health surveillance systems; 2) to provide queriable domain knowledge for public health surveillance partners; 3) to facilitate more automated case detection and surveillance decision support as a reusable component in an architecture for intelligent clinical, laboratory, and public health surveillance information systems. CONCLUSIONS: The PHSkb provides an extensible, interoperable system architecture component to support notifiable disease surveillance. Further development and testing of this resource is needed

    Contributions of scale: What we stand to gain from Indigenous and local inclusion in climate-health monitoring and surveillance systems

    Get PDF
    Understanding how climate change will affect global health is a defining challenge this century. This is predicated, however, on our ability to combine climate and health data to investigate the ways in which variations in climate, weather, and health outcomes interact. There is growing evidence to support the value of place- and community-based monitoring and surveillance efforts, which can contribute to improving both the quality and equity of data collection needed to investigate and understand the impacts of climate change on health. The inclusion of multiple and diverse knowledge systems in climate-health surveillance presents many benefits, as well as challenges. We conducted a systematic review, synthesis, and confidence assessment of the published literature on integrated monitoring and surveillance systems for climate change and public health. We examined the inclusion of diverse knowledge systems in climate-health literature, focusing on: 1) analytical framing of integrated monitoring and surveillance system processes 2) key contributions of Indigenous knowledge and local knowledge systems to integrated monitoring and surveillance systems processes; and 3) patterns of inclusion within these processes. In total, 24 studies met the inclusion criteria and were included for data extraction, appraisal, and analysis. Our findings indicate that the inclusion of diverse knowledge systems contributes to integrated climate-health monitoring and surveillance systems across multiple processes of detection, attribution, and action. These contributions include: the definition of meaningful problems; the collection of more responsive data; the reduction of selection and source biases; the processing and interpretation of more comprehensive datasets; the reduction of scale dependent biases; the development of multi-scale policy; long-term future planning; immediate decision making and prioritization of key issues; as well as creating effective knowledge-information-action pathways. The value of our findings and this review is to demonstrate how neither scientific, Indigenous, nor local knowledge systems alone will be able to contribute the breadth and depth of information necessary to detect, attribute, and inform action along these pathways of climate-health impact. Rather, it is the divergence or discordance between the methodologies and evidences of different knowledge systems that can contribute uniquely to this understanding. We critically discuss the possibility of what we, mainly local communities and experts, stand to lose if these processes of inclusion are not equitable. We explore how to shift the existing patterns of inclusion into balance by ensuring the equity of contributions and justice of inclusion in these integrated monitoring and surveillance system processes

    Potential and Actual Terrestrial Rabies Exposures in People and Domestic Animals, Upstate South Carolina, 1994–2004: A Surveillance Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there has been a reduction of rabies in pets and domestic animals during recent decades in the United States, rabies remains enzootic among bats and several species of terrestrial wildlife. Spillover transmission of wildlife rabies to domestic animals therefore remains a public health threat</p> <p>Methods</p> <p>Retrospective analysis of surveillance data of reported animal incidents (bites, scratches, mucous membrane contacts) from South Carolina, 1995 to 2003, was performed to assess risk factors of potential rabies exposures among human and animal victims.</p> <p>Results</p> <p>Dogs and cats contributed the majority (66.7% and 26.4%, respectively) of all reported incidents, with stray dogs and cats contributing 9.0% and 15.1 respectively. Current rabies vaccination status of dogs and cats (40.2% and 13.8%, respectively) were below World Health Organization recommended levels. Owned cats were half as likely to be vaccinated for rabies as dogs (OR 0.53, 95% CI 0.48, 0.58). Animal victims were primarily exposed to wildlife (83.0%), of which 27.5% were rabid. Almost 90% of confirmed rabies exposures were due to wildlife. Skunks had the highest prevalence of rabies among species of exposure animals (63.2%). Among rabid domestic animals, stray cats were the most commonly reported (47.4%).</p> <p>Conclusion</p> <p>While the majority of reported potential rabies exposures are associated with dog and cat incidents, most rabies exposures derive from rabid wildlife. Stray cats were most frequently rabid among domestic animals. Our results underscore the need for improvement of wildlife rabies control and the reduction of interactions of domestic animals, including cats, with wildlife.</p

    Imaging Mass Spectrometry: Hype or Hope?

    Get PDF
    Imaging mass spectrometry is currently receiving a significant amount of attention in the mass spectrometric community. It offers the potential of direct examination of biomolecular patterns from cells and tissue. This makes it a seemingly ideal tool for biomedical diagnostics and molecular histology. It is able to generate beautiful molecular images from a large variety of surfaces, ranging from cancer tissue sections to polished cross sections from old-master paintings. What are the parameters that define and control the implications, challenges, opportunities, and (im)possibilities associated with the application of imaging MS to biomedical tissue studies. Is this just another technological hype or does it really offer the hope to gain new insights in molecular processes in living tissue? In this critical insight this question is addressed through the discussion of a number of aspects of MS imaging technology and sample preparation that strongly determine the outcome of imaging MS experiments

    Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice

    Get PDF
    Analyses of energy metabolism in human cancer have been difficult because of rapid turnover of the metabolites and difficulties in reducing time for collecting clinical samples under surgical procedures. Utilization of xenograft transplantation of human-derived colon cancer HCT116 cells in spleens of superimmunodeficient NOD/SCID/IL-2Rγnull (NOG) mice led us to establish an experimental model of hepatic micrometastasis of the solid tumor, whereby analyses of the tissue sections collected by snap-frozen procedures through newly developed microscopic imaging mass spectrometry (MIMS) revealed distinct spatial distribution of a variety of metabolites. To perform intergroup comparison of the signal intensities of metabolites among different tissue sections collected from mice in fed states, we combined matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI–TOF-IMS) and capillary electrophoresis–mass spectrometry (CE–MS), to determine the apparent contents of individual metabolites in serial tissue sections. The results indicated significant elevation of ATP and energy charge in both metastases and the parenchyma of the tumor-bearing livers. To note were significant increases in UDP-N-acetyl hexosamines, and reduced and oxidized forms of glutathione in the metastatic foci versus the liver parenchyma. These findings thus provided a potentially important method for characterizing the properties of metabolic systems of human-derived cancer and the host tissues in vivo
    • …
    corecore