5 research outputs found

    The P2X1 receptor and platelet function

    Get PDF
    Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of αIIbβ3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques

    Platelets contribute to amyloid-  aggregation in cerebral vessels through integrin  IIb 3-induced outside-in signaling and clusterin release

    No full text
    Cerebral amyloid angiopathy (CAA) is a vascular dysfunction disorder characterized by deposits of amyloid-β (Aβ) in the walls of cerebral vessels. CAA and Aβ deposition in the brain parenchyma contribute to dementia and Alzheimer's disease (AD). We investigated the contribution of platelets, which accumulate at vascular Aβ deposits, to CAA. We found that synthetic monomeric Aβ40 bound through its RHDS (Arg-His-Asp-Ser) sequence to integrin αIIbβ3, which is the receptor for the extracellular matrix protein fibrinogen, and stimulated the secretion of adenosine diphosphate (ADP) and the chaperone protein clusterin from platelets. Clusterin promoted the formation of fibrillar Aβ aggregates, and ADP acted through its receptors P2Y1 and P2Y12 on platelets to enhance integrin αIIbβ3 activation, further increasing the secretion of clusterin and Aβ40 binding to platelets. Platelets from patients with Glanzmann's thrombasthenia, a bleeding disorder in which platelets have little or dysfunctional αIIbβ3, indicated that the abundance of this integrin dictated Aβ-induced clusterin release and platelet-induced Aβ aggregation. The antiplatelet agent clopidogrel, which irreversibly inhibits P2Y12, inhibited Aβ aggregation in platelet cultures; in transgenic AD model mice, this drug reduced the amount of clusterin in the circulation and the incidence of CAA. Our findings indicate that activated platelets directly contribute to CAA by promoting the formation of Aβ aggregates and that Aβ, in turn, activates platelets, creating a feed-forward loop. Thus, antiplatelet therapy may alleviate fibril formation in cerebral vessels of AD patients

    Monitoring of diabetic late complication.

    No full text
    Secondary symptoms of long-lasting diabetes mellitus are diabetic neuropathy with sensory symptoms, motoric disturbances due to reduced nerve conduction velocity, and diabetic cataracts. Both are related to enhanced conversion of glucose to polyols, such as sorbitol, by the enzyme aldose reductase (van Heyningen 1959; Clements 1979). Sorbitol is converted to fructose by sorbitol dehydrogenase. A low activity of this enzyme enhances the accumulation of sorbitol, thus contributing to cellular damage. Inhibitors of aldose reductase have been developed with positive results in diabetic patients (Kador et al. 1985)
    corecore