227 research outputs found

    Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two dimensional manifold

    Full text link
    In this paper we prove that the two dimensional superintegrable systems with quadratic integrals of motion on a manifold can be classified by using the Poisson algebra of the integrals of motion. There are six general fundamental classes of superintegrable systems. Analytic formulas for the involved integrals are calculated in all the cases. All the known superintegrable systems are classified as special cases of these six general classes.Comment: LaTeX, 72 pages. Extended version of the published version in JM

    Dynamic and Static Excitations of a Classical Discrete Anisotropic Heisenberg Ferromagnetic Spin Chain

    Full text link
    Using Jacobi elliptic function addition formulas and summation identities we obtain several static and moving periodic soliton solutions of a classical anisotropic, discrete Heisenberg spin chain with and without an external magnetic field. We predict the dispersion relations of these nonlinear excitations and contrast them with that of magnons and relate these findings to the materials realized by a discrete spin chain. As limiting cases, we discuss different forms of domain wall structures and their properties.Comment: Accepted for publication in Physica

    A q-Deformed Schr\"odinger Equation

    Full text link
    We found hermitian realizations of the position vector r\vec{r}, the angular momentum Λ\vec{\Lambda} and the linear momentum p\vec{p}, all behaving like vectors under the suq(2)su_q(2) algebra, generated by L0L_0 and L±L_\pm. They are used to introduce a qq-deformed Schr\" odinger equation. Its solutions for the particular cases of the Coulomb and the harmonic oscillator potentials are given and briefly discussed.Comment: 14 pages, latex, no figure

    Quasi-exactly solvable problems and the dual (q-)Hahn polynomials

    Full text link
    A second-order differential (q-difference) eigenvalue equation is constructed whose solutions are generating functions of the dual (q-)Hahn polynomials. The fact is noticed that these generating functions are reduced to the (little q-)Jacobi polynomials, and implications of this for quasi-exactly solvable problems are studied. A connection with the Azbel-Hofstadter problem is indicated.Comment: 15 pages, LaTex; final version, presentation improved, title changed, to appear in J.Math.Phy

    Deformed oscillator algebras for two dimensional quantum superintegrable systems

    Full text link
    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.Comment: 22 pages, THES-TP 10/93, hep-the/yymmnn

    On some nonlinear extensions of the angular momentum algebra

    Full text link
    Deformations of the Lie algebras so(4), so(3,1), and e(3) that leave their so(3) subalgebra undeformed and preserve their coset structure are considered. It is shown that such deformed algebras are associative for any choice of the deformation parameters. Their Casimir operators are obtained and some of their unitary irreducible representations are constructed. For vanishing deformation, the latter go over into those of the corresponding Lie algebras that contain each of the so(3) unitary irreducible representations at most once. It is also proved that similar deformations of the Lie algebras su(3), sl(3,R), and of the semidirect sum of an abelian algebra t(5) and so(3) do not lead to associative algebras.Comment: 22 pages, plain TeX + preprint.sty, no figures, to appear in J.Phys.

    Deformed algebras, position-dependent effective masses and curved spaces: An exactly solvable Coulomb problem

    Full text link
    We show that there exist some intimate connections between three unconventional Schr\"odinger equations based on the use of deformed canonical commutation relations, of a position-dependent effective mass or of a curved space, respectively. This occurs whenever a specific relation between the deforming function, the position-dependent mass and the (diagonal) metric tensor holds true. We illustrate these three equivalent approaches by considering a new Coulomb problem and solving it by means of supersymmetric quantum mechanical and shape invariance techniques. We show that in contrast with the conventional Coulomb problem, the new one gives rise to only a finite number of bound states.Comment: 22 pages, no figure. Archive version is already official. Published by JPA at http://stacks.iop.org/0305-4470/37/426

    Three dimensional quadratic algebras: Some realizations and representations

    Full text link
    Four classes of three dimensional quadratic algebras of the type \lsb Q_0 , Q_\pm \rsb == ±Q±\pm Q_\pm, \lsb Q_+ , Q_- \rsb == aQ02+bQ0+caQ_0^2 + bQ_0 + c, where (a,b,c)(a,b,c) are constants or central elements of the algebra, are constructed using a generalization of the well known two-mode bosonic realizations of su(2)su(2) and su(1,1)su(1,1). The resulting matrix representations and single variable differential operator realizations are obtained. Some remarks on the mathematical and physical relevance of such algebras are given.Comment: LaTeX2e, 23 pages, to appear in J. Phys. A: Math. Ge

    Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective

    Full text link
    A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner's 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.Comment: 15 pages, 10 figures, presented at ICCSA 2014, 14th International Conference on Computational Science and Application
    corecore