1,511 research outputs found

    The Compact UV Nucleus of M33

    Get PDF
    The most luminous X-ray source in the Local Group is associated with the nucleus of M33. This source, M33 X-8, appears modulated by ~20% over a ~106 day period, making it unlikely that the combined emission from unresolved sources could explain the otherwise persistent ~1e39 erg/s X-ray flux (Dubus et al. 1997, Hernquist et al. 1991). We present here high resolution UV imaging of the nucleus with the Planetary Camera of the HST undertaken in order to search for the counterpart to X-8. The nucleus is bluer and more compact than at longer wavelength images but it is still extended with half of its 3e38 erg/s UV luminosity coming from the inner 0.14". We cannot distinguish between a concentrated blue population and emission from a single object.Comment: 3 figures, accepted for publication in ApJ Letter

    A test for a conjecture on the nature of attractors for smooth dynamical systems

    Full text link
    Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and H\'enon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.Comment: Accepted version. Minor modifications from previous versio

    Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible?

    Full text link
    We present a bifurcation analysis of a normal form for travelling waves in one-dimensional excitable media. The normal form which has been recently proposed on phenomenological grounds is given in form of a differential delay equation. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with a saddle-node in a Bogdanov-Takens point, and a symmetry breaking spatially inhomogeneous pitchfork bifurcation. We study here the Hopf bifurcation for the propagation of a single pulse in a ring by means of a center manifold reduction, and for a wave train by means of a multiscale analysis leading to a real Ginzburg-Landau equation as the corresponding amplitude equation. Both, the center manifold reduction and the multiscale analysis show that the Hopf bifurcation is always subcritical independent of the parameters. This may have links to cardiac alternans which have so far been believed to be stable oscillations emanating from a supercritical bifurcation. We discuss the implications for cardiac alternans and revisit the instability in some excitable media where the oscillations had been believed to be stable. In particular, we show that our condition for the onset of the Hopf bifurcation coincides with the well known restitution condition for cardiac alternans.Comment: to be published in Chao

    Formation of Polymorphic Cluster Phases for Purely Repulsive Soft Spheres

    Full text link
    We present results from density functional theory and computer simulations that unambiguously predict the occurrence of first-order freezing transitions for a large class of ultrasoft model systems into cluster crystals. The clusters consist of fully overlapping particles and arise without the existence of attractive forces. The number of particles participating in a cluster scales linearly with density, therefore the crystals feature density-independent lattice constants. Clustering is accompanied by polymorphic bcc-fcc transitions, with fcc being the stable phase at high densities.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    X-ray Spectroscopy of Candidate Ultracompact X-ray Binaries

    Full text link
    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries (LMXBs) 4U 1850-087 and 4U 0513-40 as part of our continuing study of known and candidate ultracompact binaries. The LMXB 4U 1850-087 is one of four systems in which we had previously inferred an unusual Ne/O ratio in the absorption along the line of sight, most likely from material local to the binaries. However, our recent Chandra X-ray Observatory LETGS spectrum of 4U 1850-087 finds a Ne/O ratio by number of 0.22+/-0.05, smaller than previously measured and consistent with the expected interstellar value. We propose that variations in the Ne/O ratio due to source variability, as previously observed in these sources, can explain the difference between the low- and high-resolution spectral results for 4U 1850-087. Our XMM-Newton RGS observation of 4U 0513-40 also shows no unusual abundance ratios in the absorption along the line of sight. We also present spectral results from a third candidate ultracompact binary, 4U 1822-000, whose spectrum is well fit by an absorbed power-law + blackbody model with absorption consistent with the expected interstellar value. Finally, we present the non-detection of a fourth candidate ultracompact binary, 4U 1905+000, with an upper limit on the source luminosity of < 1 x 10^{32} erg s^{-1}. Using archival data, we show that the source has entered an extended quiescent state.Comment: 8 pages, 3 figures, accepted for publication to the Astrophysical Journa

    On the Validity of the 0-1 Test for Chaos

    Full text link
    In this paper, we present a theoretical justification of the 0-1 test for chaos. In particular, we show that with probability one, the test yields 0 for periodic and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics

    Exclusive photoproduction of hard dijets and magnetic susceptibility of QCD vacuum

    Get PDF
    We argue that coherent production of hard dijets by linearly polarized real photons can provide direct evidence for chirality violation in hard processes, the first measurement of the magnetic susceptibility of the quark condensate and the photon distribution amplitude. It can also serve as a sensitive probe of the generalized gluon parton distribution. Numerical calculations are presented for HERA kinematics.Comment: 4 pages, 4 figure

    Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density functional theory

    Full text link
    We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive-definite pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio L = 0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.Comment: 19 pages, 5 figures, submitted to J. Chem. Phys; new version: minor changes in structure of pape

    4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations

    Get PDF
    Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source 4U2206+54, previously proposed to be a Be star system, show the X-ray flux to be modulated with a period of approximately 9.6 days. If the modulation is due to orbital variability then this would be one of the shortest orbital periods known for a Be star X-ray source. However, the X-ray luminosity is relatively modest whereas a high luminosity would be predicted if the system contains a neutron star accreting from the denser inner regions of a Be star envelope. Although a 392s pulse period was previously reported from EXOSAT observations, a reexamination of the EXOSAT light curves does not show this or any other periodicity. An analysis of archival RXTE Proportional Counter Array observations also fails to show any X-ray pulsations. We consider possible models that may explain the properties of this source including a neutron star with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa

    Understanding disease control: influence of epidemiological and economic factors

    Get PDF
    We present a local spread model of disease transmission on a regular network and compare different control options ranging from treating the whole population to local control in a well-defined neighborhood of an infectious individual. Comparison is based on a total cost of epidemic, including cost of palliative treatment of ill individuals and preventive cost aimed at vaccination or culling of susceptible individuals. Disease is characterized by pre- symptomatic phase which makes detection and control difficult. Three general strategies emerge, global preventive treatment, local treatment within a neighborhood of certain size and only palliative treatment with no prevention. The choice between the strategies depends on relative costs of palliative and preventive treatment. The details of the local strategy and in particular the size of the optimal treatment neighborhood weakly depends on disease infectivity but strongly depends on other epidemiological factors. The required extend of prevention is proportional to the size of the infection neighborhood, but this relationship depends on time till detection and time till treatment in a non-nonlinear (power) law. In addition, we show that the optimal size of control neighborhood is highly sensitive to the relative cost, particularly for inefficient detection and control application. These results have important consequences for design of prevention strategies aiming at emerging diseases for which parameters are not known in advance
    corecore