1,511 research outputs found
The Compact UV Nucleus of M33
The most luminous X-ray source in the Local Group is associated with the
nucleus of M33. This source, M33 X-8, appears modulated by ~20% over a ~106 day
period, making it unlikely that the combined emission from unresolved sources
could explain the otherwise persistent ~1e39 erg/s X-ray flux (Dubus et al.
1997, Hernquist et al. 1991). We present here high resolution UV imaging of the
nucleus with the Planetary Camera of the HST undertaken in order to search for
the counterpart to X-8. The nucleus is bluer and more compact than at longer
wavelength images but it is still extended with half of its 3e38 erg/s UV
luminosity coming from the inner 0.14". We cannot distinguish between a
concentrated blue population and emission from a single object.Comment: 3 figures, accepted for publication in ApJ Letter
A test for a conjecture on the nature of attractors for smooth dynamical systems
Dynamics arising persistently in smooth dynamical systems ranges from regular
dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov,
uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The
latter include many classical examples such as Lorenz and H\'enon-like
attractors and enjoy strong statistical properties.
It is natural to conjecture (or at least hope) that most dynamical systems
fall into these two extreme situations. We describe a numerical test for such a
conjecture/hope and apply this to the logistic map where the conjecture holds
by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where
there is no rigorous theory. The numerical outcome is almost identical for both
(except for the amount of data required) and provides evidence for the validity
of the conjecture.Comment: Accepted version. Minor modifications from previous versio
Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible?
We present a bifurcation analysis of a normal form for travelling waves in
one-dimensional excitable media. The normal form which has been recently
proposed on phenomenological grounds is given in form of a differential delay
equation. The normal form exhibits a symmetry preserving Hopf bifurcation which
may coalesce with a saddle-node in a Bogdanov-Takens point, and a symmetry
breaking spatially inhomogeneous pitchfork bifurcation. We study here the Hopf
bifurcation for the propagation of a single pulse in a ring by means of a
center manifold reduction, and for a wave train by means of a multiscale
analysis leading to a real Ginzburg-Landau equation as the corresponding
amplitude equation. Both, the center manifold reduction and the multiscale
analysis show that the Hopf bifurcation is always subcritical independent of
the parameters. This may have links to cardiac alternans which have so far been
believed to be stable oscillations emanating from a supercritical bifurcation.
We discuss the implications for cardiac alternans and revisit the instability
in some excitable media where the oscillations had been believed to be stable.
In particular, we show that our condition for the onset of the Hopf bifurcation
coincides with the well known restitution condition for cardiac alternans.Comment: to be published in Chao
Formation of Polymorphic Cluster Phases for Purely Repulsive Soft Spheres
We present results from density functional theory and computer simulations
that unambiguously predict the occurrence of first-order freezing transitions
for a large class of ultrasoft model systems into cluster crystals. The
clusters consist of fully overlapping particles and arise without the existence
of attractive forces. The number of particles participating in a cluster scales
linearly with density, therefore the crystals feature density-independent
lattice constants. Clustering is accompanied by polymorphic bcc-fcc
transitions, with fcc being the stable phase at high densities.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
X-ray Spectroscopy of Candidate Ultracompact X-ray Binaries
We present high-resolution spectroscopy of the neutron star/low-mass X-ray
binaries (LMXBs) 4U 1850-087 and 4U 0513-40 as part of our continuing study of
known and candidate ultracompact binaries. The LMXB 4U 1850-087 is one of four
systems in which we had previously inferred an unusual Ne/O ratio in the
absorption along the line of sight, most likely from material local to the
binaries. However, our recent Chandra X-ray Observatory LETGS spectrum of 4U
1850-087 finds a Ne/O ratio by number of 0.22+/-0.05, smaller than previously
measured and consistent with the expected interstellar value. We propose that
variations in the Ne/O ratio due to source variability, as previously observed
in these sources, can explain the difference between the low- and
high-resolution spectral results for 4U 1850-087. Our XMM-Newton RGS
observation of 4U 0513-40 also shows no unusual abundance ratios in the
absorption along the line of sight. We also present spectral results from a
third candidate ultracompact binary, 4U 1822-000, whose spectrum is well fit by
an absorbed power-law + blackbody model with absorption consistent with the
expected interstellar value. Finally, we present the non-detection of a fourth
candidate ultracompact binary, 4U 1905+000, with an upper limit on the source
luminosity of < 1 x 10^{32} erg s^{-1}. Using archival data, we show that the
source has entered an extended quiescent state.Comment: 8 pages, 3 figures, accepted for publication to the Astrophysical
Journa
On the Validity of the 0-1 Test for Chaos
In this paper, we present a theoretical justification of the 0-1 test for
chaos. In particular, we show that with probability one, the test yields 0 for
periodic and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics
Exclusive photoproduction of hard dijets and magnetic susceptibility of QCD vacuum
We argue that coherent production of hard dijets by linearly polarized real
photons can provide direct evidence for chirality violation in hard processes,
the first measurement of the magnetic susceptibility of the quark condensate
and the photon distribution amplitude. It can also serve as a sensitive probe
of the generalized gluon parton distribution. Numerical calculations are
presented for HERA kinematics.Comment: 4 pages, 4 figure
Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density functional theory
We demonstrate the accuracy of the hypernetted chain closure and of the
mean-field approximation for the calculation of the fluid-state properties of
systems interacting by means of bounded and positive-definite pair potentials
with oscillating Fourier transforms. Subsequently, we prove the validity of a
bilinear, random-phase density functional for arbitrary inhomogeneous phases of
the same systems. On the basis of this functional, we calculate analytically
the freezing parameters of the latter. We demonstrate explicitly that the
stable crystals feature a lattice constant that is independent of density and
whose value is dictated by the position of the negative minimum of the Fourier
transform of the pair potential. This property is equivalent with the existence
of clusters, whose population scales proportionally to the density. We
establish that regardless of the form of the interaction potential and of the
location on the freezing line, all cluster crystals have a universal Lindemann
ratio L = 0.189 at freezing. We further make an explicit link between the
aforementioned density functional and the harmonic theory of crystals. This
allows us to establish an equivalence between the emergence of clusters and the
existence of negative Fourier components of the interaction potential. Finally,
we make a connection between the class of models at hand and the system of
infinite-dimensional hard spheres, when the limits of interaction steepness and
space dimension are both taken to infinity in a particularly described fashion.Comment: 19 pages, 5 figures, submitted to J. Chem. Phys; new version: minor
changes in structure of pape
4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations
Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source
4U2206+54, previously proposed to be a Be star system, show the X-ray flux to
be modulated with a period of approximately 9.6 days. If the modulation is due
to orbital variability then this would be one of the shortest orbital periods
known for a Be star X-ray source. However, the X-ray luminosity is relatively
modest whereas a high luminosity would be predicted if the system contains a
neutron star accreting from the denser inner regions of a Be star envelope.
Although a 392s pulse period was previously reported from EXOSAT observations,
a reexamination of the EXOSAT light curves does not show this or any other
periodicity. An analysis of archival RXTE Proportional Counter Array
observations also fails to show any X-ray pulsations. We consider possible
models that may explain the properties of this source including a neutron star
with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa
Understanding disease control: influence of epidemiological and economic factors
We present a local spread model of disease transmission on a regular network
and compare different control options ranging from treating the whole
population to local control in a well-defined neighborhood of an infectious
individual. Comparison is based on a total cost of epidemic, including cost of
palliative treatment of ill individuals and preventive cost aimed at
vaccination or culling of susceptible individuals. Disease is characterized by
pre- symptomatic phase which makes detection and control difficult. Three
general strategies emerge, global preventive treatment, local treatment within
a neighborhood of certain size and only palliative treatment with no
prevention. The choice between the strategies depends on relative costs of
palliative and preventive treatment. The details of the local strategy and in
particular the size of the optimal treatment neighborhood weakly depends on
disease infectivity but strongly depends on other epidemiological factors. The
required extend of prevention is proportional to the size of the infection
neighborhood, but this relationship depends on time till detection and time
till treatment in a non-nonlinear (power) law. In addition, we show that the
optimal size of control neighborhood is highly sensitive to the relative cost,
particularly for inefficient detection and control application. These results
have important consequences for design of prevention strategies aiming at
emerging diseases for which parameters are not known in advance
- …
