2,560 research outputs found

    Representations of classical Lie groups and quantized free convolution

    Get PDF
    We study the decompositions into irreducible components of tensor products and restrictions of irreducible representations of classical Lie groups as the rank of the group goes to infinity. We prove the Law of Large Numbers for the random counting measures describing the decomposition. This leads to two operations on measures which are deformations of the notions of the free convolution and the free projection. We further prove that if one replaces counting measures with others coming from the work of Perelomov and Popov on the higher order Casimir operators for classical groups, then the operations on the measures turn into the free convolution and projection themselves. We also explain the relation between our results and limit shape theorems for uniformly random lozenge tilings with and without axial symmetry.Comment: 43 pages, 4 figures. v3: relation to the Markov-Krein correspondence is updated and correcte

    Single qubit decoherence under a separable coupling to a random matrix environment

    Full text link
    This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude than the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects and symmetry breaking equilibrium states.Comment: 13 pages, 7 figure

    A trivial observation on time reversal in random matrix theory

    Full text link
    It is commonly thought that a state-dependent quantity, after being averaged over a classical ensemble of random Hamiltonians, will always become independent of the state. We point out that this is in general incorrect: if the ensemble of Hamiltonians is time reversal invariant, and the quantity involves the state in higher than bilinear order, then we show that the quantity is only a constant over the orbits of the invariance group on the Hilbert space. Examples include fidelity and decoherence in appropriate models.Comment: 7 pages 3 figure

    Fidelity amplitude of the scattering matrix in microwave cavities

    Full text link
    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the scattering fidelity is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength could be determined independently from level dynamics of the system, thus providing a parameter free agreement between theory and experiment

    A random matrix approach to decoherence

    Get PDF
    In order to analyze the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that permits to vary the coupling strength between the subsystems. The case of strong coupling is analyzed in detail, and we find no significant differences except for very low-dimensional spaces.Comment: 11 pages, 5 eps-figure

    Scattering fidelity in elastodynamics

    Full text link
    The recent introduction of the concept of scattering fidelity, causes us to revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the ``distortion'' of the coda of an acoustic signal is measured under temperature changes. This quantity is in fact the negative logarithm of scattering fidelity. We re-analyse their experimental data for two samples, and we find good agreement with random matrix predictions for the standard fidelity. Usually, one may expect such an agreement for chaotic systems only. While the first sample, may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is more surprising. For the first sample, the random matrix analysis yields a perturbation strength compatible with semiclassical predictions. For the cuboid the measured perturbation strength is much larger than expected, but with the fitted values for this strength, the experimental data are well reproduced.Comment: 4 page

    Monomial integrals on the classical groups

    Full text link
    This paper presents a powerfull method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas turn out to be of similar form. They are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows to obtain analytical expressions very efficiently. Those expressions contain the matrix dimension as a free parameter.Comment: 16 page

    Random matrix description of decaying quantum systems

    Full text link
    This contribution describes a statistical model for decaying quantum systems (e.g. photo-dissociation or -ionization). It takes the interference between direct and indirect decay processes explicitely into account. The resulting expressions for the partial decay amplitudes and the corresponding cross sections may be considered a many-channel many-resonance generalization of Fano's original work on resonance lineshapes [Phys. Rev 124, 1866 (1961)]. A statistical (random matrix) model is then introduced. It allows to describe chaotic scattering systems with tunable couplings to the decay channels. We focus on the autocorrelation function of the total (photo) cross section, and we find that it depends on the same combination of parameters, as the Fano-parameter distribution. These combinations are statistical variants of the one-channel Fano parameter. It is thus possible to study Fano interference (i.e. the interference between direct and indirect decay paths) on the basis of the autocorrelation function, and thereby in the regime of overlapping resonances. It allows us, to study the Fano interference in the limit of strongly overlapping resonances, where we find a persisting effect on the level of the weak localization correction.Comment: 16 pages, 2 figure

    Decoherence of an nn-qubit quantum memory

    Full text link
    We analyze decoherence of a quantum register in the absence of non-local operations i.e. of nn non-interacting qubits coupled to an environment. The problem is solved in terms of a sum rule which implies linear scaling in the number of qubits. Each term involves a single qubit and its entanglement with the remaining ones. Two conditions are essential: first decoherence must be small and second the coupling of different qubits must be uncorrelated in the interaction picture. We apply the result to a random matrix model, and illustrate its reach considering a GHZ state coupled to a spin bath.Comment: 4 pages, 2 figure
    corecore