9 research outputs found

    Breast cancer patients' clinical outcome measures are associated with Src kinase family member expression

    Get PDF
    <p>BACKGROUND: This study determined mRNA expression levels for Src kinase family (SFK) members in breast tissue specimens and assessed protein expression levels of prominent SFK members in invasive breast cancer to establish associations with clinical outcome. Ki67 was investigated to determine association between SFK members and proliferation.</p> <p>METHODS: The mRNA expression levels were assessed for eight SFK members by quantitative real-time PCR. Immunohistochemistry was performed for c-Src, Lyn, Lck and Ki67.</p> <p>RESULTS: mRNA expression was quantified in all tissue samples. SRC and LYN were the most highly expressed in malignant tissue. LCK was more highly expressed in oestrogen receptor (ER)-negative, compared with ER-positive tumours. High cytoplasmic Src kinase protein expression was significantly associated with decreased disease-specific survival. Lyn was not associated with survival at any cellular location. High membrane Lck expression was significantly associated with improved survival. Ki67 expression correlated with tumour grade and nuclear c-Src, but was not associated with survival.</p> <p>CONCLUSIONS: All eight SFK members were expressed in different breast tissues. Src kinase was highest expressed in breast cancer and had a negative impact on disease-specific survival. Membrane expression of Lck was associated with improved clinical outcome. High expression of Src kinase correlated with high proliferation.</p&gt

    Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor

    No full text
    Classic work by Huggins and Hodges demonstrated that human prostate cancer regresses dramatically during antihormonal therapy but recurs frequently with androgen independence. Perturbations in the androgen receptor (AR) and PTEN–AKT signaling axes are significantly correlated with the progression of prostate cancer. Genetic alterations of the AR cause receptor hypersensitivity, promiscuity, and androgen-independent receptor transactivation. Prostate cancers maintain an elevated AKT activity through the loss of PTEN function or the establishment of autocrine signaling by growth factors and cytokines. We used an in vivo prostate regeneration system to investigate the biological potency of the potential crosstalk between these two signal transduction pathways. We demonstrate a direct synergy between AKT and AR signaling that is sufficient to initiate and progress naΓ―ve adult murine prostatic epithelium to frank carcinoma and override the effect of androgen ablation. Both genotropic and nongenotropic signals mediated by AR are essential for this synergistic effect. However, phosphorylation of AR by AKT at Ser-213 and Ser-791 is not critical for this synergy. These results suggest that more efficient therapeutics for advanced prostate cancer may need to target simultaneously AR signaling and AKT or the growth factor receptor tyrosine kinases that activate AKT
    corecore