21 research outputs found
Characterization of anogenital distance and its relationship to fertility in lactating Holstein cows
peer-reviewedAnogenital distance (AGD) serves as a marker for prenatal androgenization, reproductive development, and fertility in humans and rodents. The primary objectives of this observational study in lactating dairy cows were to (1) characterize the distribution and variability of AGD, (2) determine the relationship among AGD and potential postnatal AGD determinants of age and height, and (3) evaluate the associations between AGD and pregnancy to first artificial insemination (P/AI) and cumulative pregnancy by 250 d in milk (DIM) within parity groups (first, second, and third+ parities). The secondary objective was to evaluate the association between AGD and testosterone concentrations. The AGD (mm), age (yr), and height at hip (cm) at the time of AGD determination, and aforesaid reproductive outcomes were determined in 921 Holstein cows (first, second, and third+ parity; n = 360, 256, and 305, respectively). Plasma concentrations of testosterone were determined in a subset of 93 cows. Overall, AGD had a normal distribution and high variability [mean (±standard deviation); 131.0 ± 12.2 mm], was weakly associated with cow age and height (coefficient of determination = 0.09 and 0.04, respectively), and had an inverse relationship with P/AI in first- and second-parity cows, but not in third+ parity cows. For every 1 mm increase in AGD, the odds of P/AI decreased by 3.4 and 2.4% for first- and second-parity cows, respectively. The optimal AGD threshold to predict probability of P/AI was 127.1 mm for both first- (sensitivity: 66.4; specificity: 56.6%) and second-parity cows (sensitivity: 46.0; specificity: 70.4%). Accordingly, first- and second-parity cows were categorized into either short or long AGD (≤ or >127.1 mm), and associations with reproductive outcomes were evaluated. First-parity cows with long AGD had lower P/AI (30.9 vs. 53.6%) and decreased likelihood (hazard ratio: 0.68) of pregnancy by 250 DIM than those with short AGD. Similarly, second-parity cows with long AGD had reduced P/AI (28.3 vs. 44.4%) and a tendency for decreased likelihood (hazard ratio: 0.76) of pregnancy by 250 DIM than in cows with short AGD. The association between AGD and testosterone was weak and nonsignificant. In summary, AGD in Holstein cows was normally distributed, highly variable, and weakly associated with age and height. Besides, AGD had an inverse relationship with P/AI and cumulative pregnancy by 250 DIM in first- and second-parity cows; however, such a relationship was not evident in older (third+ parity) cows.This project was financially supported in part by Growing Forward 2, a federal-provincial-territorial initiative (Research Opportunities and Innovation–Internal Initiatives Project # DA7642064). M. Gobikrushanth is a recipient of the Teagasc-University of Alberta Walsh Fellowship sponsored by Alberta Innovates Biosolutions
The relationship between serum insulin-like growth factor-1 (IGF-1) concentration and reproductive performance, and genome-wide associations for serum IGF-1 in Holstein cows
peer-reviewedThe objectives of this study were to determine (1) factors associated with serum concentration of insulin-like growth factor-1 (IGF-1); (2) the relationship between serum IGF-1 concentration during the first week postpartum and ovarian cyclicity status by 35 d postpartum (DPP); (3) an optimum serum IGF-1 concentration threshold predictive of pregnancy to first artificial insemination (P/AI), including its diagnostic values; (4) the associations among categories of serum IGF-1 concentration and reproductive outcomes (P/AI and pregnancy risk up to 150 and 250 DPP); and (5) single nucleotide polymorphisms (SNP) associated with phenotypic variation in serum IGF-1 concentration in dairy cows. Serum IGF-1 concentration was determined at 7 (±2.4; ±standard error of the mean) DPP in 647 lactating Holstein cows (213 primiparous, 434 multiparous) from 7 herds in Alberta, Canada. The overall mean, median, minimum, and maximum serum IGF-1 concentrations during the first week postpartum were 37.8 (±1.23), 31.0, 20.0, and 225.0 ng/mL, respectively. Herd, age, parity, precalving body condition score, and season of blood sampling were all identified as factors associated with serum IGF-1 concentrations. Although serum IGF-1 concentration during the first week postpartum had no association with ovarian cyclicity status by 35 DPP in primiparous cows, it was greater in cyclic than in acyclic multiparous cows (32.2 vs. 27.4 ng/mL, respectively). The optimum serum IGF-1 thresholds predictive of P/AI were 85.0 ng/mL (sensitivity = 31.9%; specificity = 89.1%) and 31.0 ng/mL (sensitivity = 45.5%; specificity = 66.9%) for primiparous and multiparous cows, respectively. When cows were grouped into either high or low IGF-1 categories (greater or less than or equal to 85.0 ng/mL for primiparous cows and greater or less than or equal to 31.0 ng/mL for multiparous cows, respectively), primiparous cows with high IGF-1 had 4.43 times greater odds of P/AI and a tendency for higher pregnancy risk up to 150 DPP than those with low IGF-1, but not up to 250 DPP. Likewise, multiparous cows with high IGF-1 had 1.61 times greater odds of P/AI than those with low IGF-1. Pregnancy risk up to 150 and 250 DPP, however, did not differ between IGF-1 categories in multiparous cows. Moreover, 37 SNP across 10 Bos taurus autosomes were associated with variation in serum IGF-1 concentration, and 4 previously identified candidate genes related to fertility that were in linkage disequilibrium with some of these SNP were also identified
The relationship between serum anti-Müllerian hormone concentrations and fertility, and genome-wide associations for anti-Müllerian hormone in Holstein cows
peer-reviewedThe objectives of this study were to (1) evaluate factors associated with variation in circulating anti-Müllerian hormone (AMH) concentrations, (2) establish an optimum AMH threshold predictive of pregnancy to first artificial insemination (P/AI), (3) examine the relationship between AMH and fertility (P/AI, pregnancy loss between 30 and 60 d after artificial insemination, and pregnancy risk up to 250 d postpartum), and (4) identify quantitative trait loci associated with phenotypic variation of AMH concentrations in dairy cows. Serum AMH concentrations (pg/mL) were determined at 7 ± 2.4 d postpartum in 647 lactating Holstein cows (213 primiparous, 434 multiparous) from 1 research and 6 commercial dairy herds in Alberta, Canada. Of these, 589 cows were genotyped on the 26K Bovine BeadChip (Neogen Inc., Lincoln, NE) and subsequently imputed to the Illumina Bovine High Density BeadChip (Illumina, San Diego, CA) for genome-wide association analysis for variation in serum AMH concentrations. Factors associated with variation in serum AMH concentrations and the relationship between categories of AMH and aforementioned fertility outcomes were evaluated only in a subset of 460 cows that had a complete data set available. The overall mean (±standard error of the mean), median, minimum, and maximum AMH concentrations were 191.1 ± 6.3, 151.7, 13.9, and 1,879.0 pg/mL, respectively. The AMH concentrations were not associated with herd, precalving body condition score, postpartum week, and season of sampling; the lactation number, however, had a quadratic relationship with serum AMH concentrations (116.2, 204.9 204.5, and 157.9 pg/mL for first, second, third, and ≥fourth lactation, respectively). The optimum AMH threshold predictive of P/AI could not be established because the receiver operating characteristic curve analysis model was nonsignificant. Categories of AMH [low (285.0 pg/mL; n = 92) based on lowest 20%, intermediate 60%, and highest 20% serum AMH) had no associations with P/AI (34, 43, and 40%), pregnancy loss between 30 and 60 d after artificial insemination (20, 12, and 8%), or pregnancy risk up to 250 d postpartum. One candidate gene associated with AMH production [AMH gene on Bos taurus autosome (BTA) 7] and 4 candidate genes related to embryo development (SCAI and PPP6C genes on BTA11 and FGF18 and EEF2K genes on BTA20 and BTA25, respectively) were in linkage disequilibrium with single nucleotide polymorphisms associated with phenotypic variation in serum AMH in dairy cows
Characterization of the variability and repeatability of gonadotropin-releasing hormone–induced luteinizing hormone responses in dairy cows within a synchronized ovulation protocol
peer-reviewedThe primary objective was to determine the variability and repeatability of GnRH-induced LH responses. The secondary objective was to evaluate the associations among plasma LH, FSH, estradiol (E2), and progesterone (P4) concentrations. One hundred lactating Holstein cows (35 primiparous, 65 multiparous) were initially subjected to a presynchronization protocol (d 0, PGF2α; d 3, GnRH) followed 7 d later by Ovsynch (d 10, GnRH; d 17, PGF2α; 56 h later, GnRH) and timed artificial insemination 16 h after the last GnRH. Blood samples were collected immediately before the GnRH injection of presynchronization and the second GnRH of Ovsynch to determine plasma concentrations of LH, FSH, and P4. A second blood sample was collected 2 h after each of the above GnRH injections to determine GnRH-induced LH and FSH concentrations. Plasma concentrations of E2 were also determined in samples collected immediately before the second GnRH of Ovsynch. Cows that (1) had higher LH concentrations at 0 h than at 2 h after GnRH, (2) showed an ongoing spontaneous LH surge, (3) did not respond to GnRH, and (4) had P4 ≥ 0.5 ng/mL at GnRH of presynchronization and the second GnRH of Ovsynch were excluded from the analysis. The variability (coefficient of variation) and repeatability [between animal variance/(within animal variance + between animal variance)] of GnRH-induced LH response were determined from samples collected 2 h after the GnRH of presynchronization and the second GnRH of Ovsynch. The associations among plasma LH, FSH, E2, and P4 were determined at the second GnRH of Ovsynch. Mean (±SEM) LH concentrations before GnRH were 0.5 ± 0.04 and 0.6 ± 0.03 ng/mL, whereas mean LH concentrations 2 h after GnRH were 9.8 ± 1.0 and 12.1 ± 0.8 ng/mL at GnRH of presynchronization and the second GnRH of Ovsynch, respectively. The variability of GnRH-induced LH was 76.1 and 52.1% at GnRH of presynchronization and the second GnRH of Ovsynch, respectively. The repeatability estimate for GnRH-induced LH concentration between GnRH of presynchronization and Ovsynch assessments was 0.10. Plasma concentrations of LH were positively associated with FSH and E2 (r = 0.61 and 0.30, respectively) and negatively associated with P4 (r = −0.46) at the second GnRH of Ovsynch. In summary, GnRH-induced LH responses were highly variable and unrepeatable, and LH concentrations were positively associated with FSH and E2 and negatively associated with P4
Evaluation of alternative strategies to treat anoestrous dairy cows and implications for reproductive performance in pasture-based seasonal calving herds: A pilot study
peer-reviewedThe objective of the present study was to assess the effects on ovulation and reproductive performance of a single injection of either GnRH or hCG applied 9 days before the start of the seasonal breeding period in anovulatory anoestrus cows compared with a 7-day progesterone-Ovsynch protocol. The study was conducted on four grass-based seasonal calving dairy herds in Ireland. The total number of cows in the herds was 2112, of which 488 were diagnosed as anoestrus based on absence of behavioural oestrus during a 30 day period. Ovarian structures and the uterus were examined by transrectal ultrasound on all 488 presumptive anestrus cows 9 days before mating start date (MSD). The number of corpora lutea (CL), number of large follicles (≥10 mm) and uterine reproductive tract score were recorded. Only cows that had no CL, ultrasound reproductive tract score ≤2 and were ≥30 days in milk (DIM) were enrolled in the study (n = 214). Cows were blocked by parity, DIM and body condition score and randomly assigned to one of four treatments: i.m. injection of gonadotropin releasing hormone analogue [GnRH; (n = 57)], i.m. injection of human chorionic gonadotropin [hCG; (n = 48)], 7-day Progesterone-Ovsynch protocol [P4OV; (n = 60)] and Control (no hormonal intervention, n = 49). A second ultrasound examination was performed 7 days after treatment to determine ovulatory response. There was a treatment effect on ovulation rate (P < 0.0001), whereby Control cows had a lesser ovulation rate compared with GnRH-, hCG- and P4OV-treated cows. Submission rate during the first 21 days of the breeding period [SR21; (P = 0.74)], pregnant to first service [P/AI1; (P = 0.24)], pregnant within 42 days after the onset of breeding [P42; (P = 0.73)], and pregnant within 84 days after the onset of breeding were not affected by treatment. A tendency was observed (P = 0.07) for greater likelihood of pregnancy within 21 days after the onset of breeding (P21) for P4OV and Control cows compared with GnRH- and hCG-treated cows. GnRH- and hCG-treated cows tended (P = 0.10) to have greater P/AI1 when first service events occurred after day 21 of the breeding period compared with Control cows. P4OV cows had shorter MSD to first service interval (P = 0.0001) and shorter MSD to conception interval (P = 0.02) compared with Control, GnRH- and hCG-treated cows. In conclusion, treatment of anestrous cows with GnRH or hCG resulted in an increase in ovulation rate compared with untreated Control cows, but did not improve reproductive performance during the first 21 days of the breeding season. The best reproductive performance results were obtained with the P4OV treatment, but this treatment has the greatest cost, and has the greatest number of interventions. The observation of good P/AI1 in hCG- and GnRH- treated cows when the first insemination occurred later than day 21 after MSD warrants further investigation, and suggests that these interventions should be applied earlier than 9 days before the farm MSD
The relationship between anogenital distance and fertility, and genome-wide associations for anogenital distance in Irish Holstein-Friesian cows
peer-reviewedThe evaluation of anogenital distance (AGD), the distance from the center of the anus to base of the clitoris, as a potential fertility trait for genetic selection in dairy cows has generated recent interest. The objectives of this cross-sectional observational study were to (1) characterize the distribution and variability of AGD, (2) determine factors associated with AGD, (3) estimate heritability for AGD, (4) identify single nucleotide polymorphisms (SNP) associated with phenotypic variation of AGD, and (5) validate the relationship between categories of AGD and fertility in Irish Holstein-Friesian cows. Anogenital distance was measured using digital calipers in 1,180 Holstein cows (mean ± standard deviation: 225 ± 79 d in milk) from 10 dairy herds located in Munster, Ireland. In addition, age (yr), weight (kg), height at hip (cm), and body condition score (BCS) at the time of AGD measurement were determined in a subset of 281 cows. Genotype information available from 908 cows was subsequently imputed to the Illumina Bovine High Density BeadChip (Illumina Inc., San Diego, CA) for genome-wide association analysis of phenotypic variation in AGD. Overall, AGD had a normal distribution and high variability (mean ± standard deviation; 119.2 ± 11.6 mm). Anogenital distance was weakly but positively associated with cow age, hip height, and body weight, and negatively associated with BCS; the phenotypic variation in AGD that was explainable by these variables was small (coefficient of determination; R2 = 0.09, 0.06, 0.10, and 0.02, respectively). The estimated heritability for AGD was 0.37 (standard error of mean ± 0.08). Six SNP of suggestive significance were identified on Bos taurus autosomes 6, 15, 20, and 26; however, none of these SNP was related to previously identified candidate genes for fertility. Cows were categorized into quartiles (Q1; 86 to 111 mm; n = 311, Q2; 112 to 120 mm; n = 330; Q3; 121 to 127 mm; n = 265, and Q4; 128 to 160 mm; n = 274) based on AGD and the association with reproductive outcomes examined (21-d submission rate, pregnancy to first AI, pregnancy rate within 21, 42 and 84-d after the farm mating start date, and number of times bred). None of the reproductive variables differed significantly between AGD categories. In summary, despite identification of high variability and moderate heritability for AGD in Irish Holstein-Friesian cows, reproductive outcomes did not differ between categories of AGD. This latter result differs from our previous finding of an inverse relationship between AGD and pregnancy outcomes in first- and second-parity Canadian Holstein cows, emphasizing the need to test and validate this new phenotype in diverse cow populations
Anti-Müllerian hormone in grazing dairy cows: Identification of factors affecting plasma concentration, relationship with phenotypic fertility, and genome-wide associations
peer-reviewedThe objectives of this study were to (1) characterize the distribution and variability of plasma anti-Müllerian hormone (AMH) concentration; (2) evaluate factors associated with phenotypic variation in plasma AMH; (3) examine the associations between categories of plasma AMH and reproductive outcomes [pregnancy to first artificial insemination (P/AI), and pregnancy rates within 21, 42, and 84 d after the mating start date (MSD)]; (4) estimate pedigree and genomic heritability for plasma AMH; and (5) identify and validate SNP associated with phenotypic variation in plasma AMH. Plasma AMH concentration (pg/mL) was determined from a blood sample collected (mean ± standard deviation) 10 ± 2 d after first insemination at detected estrus (IDE) in 2,628 first- and second-parity Irish dairy cows. Overall, plasma AMH had a positively skewed distribution with mean (± standard deviation), median, minimum, and maximum concentrations of 326 ± 231, 268, 15, and 2,863 pg/mL, respectively. Plasma AMH was greatest for Jersey, followed by Holstein × Jersey, Holstein × Norwegian Red, and Holstein cows (410, 332, 284, and 257 pg/mL, respectively). Second-parity cows had greater plasma AMH than first-parity cows (333 vs. 301 pg/mL, respectively). Samples collected at 7 and 8 d after first IDE had lesser plasma AMH than those collected on d 9, 10, 11, 12, and 13 after first IDE (291 and 297 vs. 317, 319, 331, 337, and 320 pg/mL). Plasma AMH was not associated with either body condition score at first IDE or the interval from calving to MSD. Cows were categorized into low (≤150 pg/mL; n = 526; lowest 20%), intermediate (>150 to ≤461 pg/mL; n = 1,576; intermediate 60%), and high AMH (>461 pg/mL; n = 526; highest 20%) groups based on plasma AMH, and associations with reproductive outcomes were tested. Cows with high and intermediate plasma AMH had 1.42- and 1.51-times-greater odds of becoming pregnant within 84 d after the MSD than those with low plasma AMH (90.3 and 90.8 vs. 86.8%, respectively); however, P/AI and pregnancy rate within 21 and 42 d after the MSD did not differ among AMH categories. Plasma AMH was moderately heritable (pedigree heritability of 0.40 ± 0.06 and genomic heritability of 0.45 ± 0.05), and 68 SNP across Bos taurus autosomes 7 and 11 were associated with phenotypic variation in plasma AMH. Out of 68 SNP, 42 were located in a single quantitative trait locus on Bos taurus autosome 11 that harbored 6 previously identified candidate genes (NR5A1, HSPA5, CRB2, DENND1A, NDUFA8, and PTGS) linked to fertility-related phenotypes in dairy cows
Characterization of anogenital distance and its relationship to fertility in lactating Holstein cows
Anogenital distance (AGD) serves as a marker for prenatal androgenization, reproductive development, and fertility in humans and rodents. The primary objectives of this observational study in lactating dairy cows were to (1) characterize the distribution and variability of AGD, (2) determine the relationship among AGD and potential postnatal AGD determinants of age and height, and (3) evaluate the associations between AGD and pregnancy to first artificial insemination (P/AI) and cumulative pregnancy by 250 d in milk (DIM) within parity groups (first, second, and third+ parities). The secondary objective was to evaluate the association between AGD and testosterone concentrations. The AGD (mm), age (yr), and height at hip (cm) at the time of AGD determination, and aforesaid reproductive outcomes were determined in 921 Holstein cows (first, second, and third+ parity; n = 360, 256, and 305, respectively). Plasma concentrations of testosterone were determined in a subset of 93 cows. Overall, AGD had a normal distribution and high variability [mean (±standard deviation); 131.0 ± 12.2 mm], was weakly associated with cow age and height (coefficient of determination = 0.09 and 0.04, respectively), and had an inverse relationship with P/AI in first- and second-parity cows, but not in third+ parity cows. For every 1 mm increase in AGD, the odds of P/AI decreased by 3.4 and 2.4% for first- and second-parity cows, respectively. The optimal AGD threshold to predict probability of P/AI was 127.1 mm for both first- (sensitivity: 66.4; specificity: 56.6%) and second-parity cows (sensitivity: 46.0; specificity: 70.4%). Accordingly, first- and second-parity cows were categorized into either short or long AGD (≤ or >127.1 mm), and associations with reproductive outcomes were evaluated. First-parity cows with long AGD had lower P/AI (30.9 vs. 53.6%) and decreased likelihood (hazard ratio: 0.68) of pregnancy by 250 DIM than those with short AGD. Similarly, second-parity cows with long AGD had reduced P/AI (28.3 vs. 44.4%) and a tendency for decreased likelihood (hazard ratio: 0.76) of pregnancy by 250 DIM than in cows with short AGD. The association between AGD and testosterone was weak and nonsignificant. In summary, AGD in Holstein cows was normally distributed, highly variable, and weakly associated with age and height. Besides, AGD had an inverse relationship with P/AI and cumulative pregnancy by 250 DIM in first- and second-parity cows; however, such a relationship was not evident in older (third+ parity) cows.This project was financially supported in part by Growing Forward 2, a federal-provincial-territorial initiative (Research Opportunities and Innovation–Internal Initiatives Project # DA7642064). M. Gobikrushanth is a recipient of the Teagasc-University of Alberta Walsh Fellowship sponsored by Alberta Innovates Biosolutions