109 research outputs found

    Small-scale field study of window films’ impact on daylight availability under clear sky conditions

    Get PDF
    Daylight illuminance levels and their spatial distribution are important design elements to achieve indoor visual comfort conditions and sustainability in buildings during the operation stage. While a proper daylighting scheme increases the efficiency of the building, the excessive use of glazed surfaces can contribute to thermal and visual discomfort, hence increasing the cooling demand and use of artificial lighting. Solar control film (SCF) is a self-adhesive thin film that can be applied on glazing systems of existing buildings for retrofitting purposes to modify thermal and optical properties of the glass substrate. This paper analyses experimentally the impact of single glazing with different SCFs on the indoor illuminance levels and respective distribution on horizontal work plane by comparing the measured absolute values and the useful daylight illuminance metric. Field experiments using a small scale model with the glazing oriented to the south, in Lisbon, were performed for a 6 mm clear glass and four different SCFs applied on the external surface of the glass, under clear sky conditions during summer and winter solstice at 9h00, 12h00, and 15h00. The results show that all SCFs reduced the indoor illuminance, which demonstrate their potential for glazing refurbishment when indoor visual discomfort occurs in buildings.FCT - Fundação para a Ciência e a Tecnologia (PD/BD/127848/2016

    Network analysis of spreading of dengue, Zika and chikungunya in the state of Bahia based on notified, confirmed and discarded cases

    Get PDF
    Despite successful results of using complex networks to model and characterize the spread of dengue cases, works to date have mainly used data from primarily reported cases, without further consideration whether they were later confirmed or not. On the other hand, a study of the interdependence of confirmed and discarded cases of arboviruses have emphasized that the co-circulation of three arboviruses—dengue, Zika and chikungunya—may have led to false diagnoses due to several similarities in the early symptoms of the three diseases on acute phase. This implies that case notifications of one disease could be confirmed cases of others, and that discarded cases must be taken into account to avoid misinterpretations of the phenomenon. In this work we investigated the consequences of including information from discarded and confirmed cases in the analysis of arbovirus networks. This is done by firstly evaluating the possible changes in the networks after removing the discarded cases from the database of each arbovirus, and secondly by verifying the cross-relationship of the indices of the networks of confirmed and discarded cases of arboviruses. As will be detailed later on, our results reveal changes in the network indices when compared to when only confirmed cases are considered. The magnitudes of the changes are directly proportional to the amount of discarded cases. The results also reveal a strong correlation between the average degree of the networks of discarded cases of dengue and confirmed cases of Zika, but only a moderate correlation between that for networks of discarded cases of dengue and confirmed cases of chikungunya. This finding is compatible with the fact that dengue and Zika diseases are caused by closely related flaviviruses, what is not the case of the chikungunya caused by a togavirus

    Complex network analysis of arboviruses in the same geographic domain: Differences and similarities.

    Get PDF
    Arbovirus can cause diseases with a broad spectrum from mild to severe and long-lasting symptoms, affecting humans worldwide and therefore considered a public health problem with global and diverse socio-economic impacts. Understanding how they spread within and across different regions is necessary to devise strategies to control and prevent new outbreaks. Complex network approaches have widespread use to get important insights on several phenomena, as the spread of these viruses within a given region. This work uses the motif-synchronization methodology to build time varying complex networks based on data of registered infections caused by Zika, chikungunya, and dengue virus from 2014 to 2020, in 417 cities of the state of Bahia, Brazil. The resulting network sets capture new information on the spread of the diseases that are related to the time delay in the synchronization of the time series among different municipalities. Thus the work adds new and important network-based insights to previous results based on dengue dataset in the period 2001-2016. The most frequent synchronization delay time between time series in different cities, which control the insertion of edges in the networks, ranges 7 to 14 days, a period that is compatible with the time of the individual-mosquito-individual transmission cycle of these diseases. As the used data covers the initial periods of the first Zika and chikungunya outbreaks, our analyses reveal an increasing monotonic dependence between distance among cities and the time delay for synchronization between the corresponding time series. The same behavior was not observed for dengue, first reported in the region back in 1986, either in the previously 2001-2016 based results or in the current work. These results show that, as the number of outbreaks accumulates, different strategies must be adopted to combat the dissemination of arbovirus infections

    Interdependence between confirmed and discarded cases of dengue, chikungunya and Zika viruses in Brazil: A multivariate time-series analysis.

    Get PDF
    The co-circulation of different arboviruses in the same time and space poses a significant threat to public health given their rapid geographic dispersion and serious health, social, and economic impact. Therefore, it is crucial to have high quality of case registration to estimate the real impact of each arboviruses in the population. In this work, a Vector Autoregressive (VAR) model was developed to investigate the interrelationships between discarded and confirmed cases of dengue, chikungunya, and Zika in Brazil. We used data from the Brazilian National Notifiable Diseases Information System (SINAN) from 2010 to 2017. There were three peaks in the series of dengue notification in this period occurring in 2013, 2015 and in 2016. The series of reported cases of both Zika and chikungunya reached their peak in late 2015 and early 2016. The VAR model shows that the Zika series have a significant impact on the dengue series and vice versa, suggesting that several discarded and confirmed cases of dengue could actually have been cases of Zika. The model also suggests that the series of confirmed and discarded chikungunya cases are almost independent of the cases of Zika, however, affecting the series of dengue. In conclusion, co-circulation of arboviruses with similar symptoms could have lead to misdiagnosed diseases in the surveillance system. We argue that the routinely use of mathematical and statistical models in association with traditional symptom-surveillance could help to decrease such errors and to provide early indication of possible future outbreaks. These findings address the challenges regarding notification biases and shed new light on how to handle reported cases based only in clinical-epidemiological criteria when multiples arboviruses co-circulate in the same population

    Trypanosoma cruzi Gene Expression in Response to Gamma Radiation

    Get PDF
    Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress
    corecore