1,802 research outputs found

    Exact clesed form of the return probability on the Bethe lattice

    Full text link
    An exact closed form solution for the return probability of a random walk on the Bethe lattice is given. The long-time asymptotic form confirms a previously known expression. It is however shown that this exact result reduces to the proper expression when the Bethe lattice degenerates on a line, unlike the asymptotic result which is singular. This is shown to be an artefact of the asymptotic expansion. The density of states is also calculated.Comment: 7 pages, RevTex 3.0, 2 figures available upon request from [email protected], to be published in J.Phys.A Let

    Flory theory for Polymers

    Full text link
    We review various simple analytical theories for homopolymers within a unified framework. The common guideline of our approach is the Flory theory, and its various avatars, with the attempt of being reasonably self-contained. We expect this review to be useful as an introduction to the topic at the graduate students level.Comment: Topical review appeared J. Phys.: Condens. Matter, 46 pages, 8 Figures. Sec. VIF added. Typos fixed. Few references adde

    Colour analysis of degraded parchment

    Get PDF
    Multispectral imaging was employed to collect data on the degradation of an 18th century parchment by a series of physical and chemical treatments. Each sample was photographed before and after treatment by a monochrome digital camera with 21 narrow-band filters. A template-matching technique was used to detect the circular holes in each sample and a four-point projective transform to register the 21 images. Colour accuracy was verified by comparison of reconstructed spectra with measurements by spectrophotometer

    A pseudo-spectral approach to inverse problems in interface dynamics

    Full text link
    An improved scheme for computing coupling parameters of the Kardar-Parisi-Zhang equation from a collection of successive interface profiles, is presented. The approach hinges on a spectral representation of this equation. An appropriate discretization based on a Fourier representation, is discussed as a by-product of the above scheme. Our method is first tested on profiles generated by a one-dimensional Kardar-Parisi-Zhang equation where it is shown to reproduce the input parameters very accurately. When applied to microscopic models of growth, it provides the values of the coupling parameters associated with the corresponding continuum equations. This technique favorably compares with previous methods based on real space schemes.Comment: 12 pages, 9 figures, revtex 3.0 with epsf style, to appear in Phys. Rev.

    Diffusion and Trapping on a one-dimensional lattice

    Full text link
    The properties of a particle diffusing on a one-dimensional lattice where at each site a random barrier and a random trap act simultaneously on the particle are investigated by numerical and analytical techniques. The combined effect of disorder and traps yields a decreasing survival probability with broad distribution (log-normal). Exact enumerations, effective-medium approximation and spectral analysis are employed. This one-dimensional model shows rather rich behaviours which were previously believed to exist only in higher dimensionality. The possibility of a trapping-dominated super universal class is suggested.Comment: 20 pages, Revtex 3.0, 13 figures in compressed format using uufiles command, to appear in Phys. Rev. E, for an hard copy or problems e-mail to: [email protected]

    Diffusion with critically correlated traps and the slow relaxation of the longest wavelength mode

    Full text link
    We study diffusion on a substrate with permanent traps distributed with critical positional correlation, modeled by their placement on the perimeters of a critical percolation cluster. We perform a numerical analysis of the vibrational density of states and the largest eigenvalue of the equivalent scalar elasticity problem using the method of Arnoldi and Saad. We show that the critical trap correlation increases the exponent appearing in the stretched exponential behavior of the low frequency density of states by approximately a factor of two as compared to the case of no correlations. A finite size scaling hypothesis of the largest eigenvalue is proposed and its relation to the density of states is given. The numerical analysis of this scaling postulate leads to the estimation of the stretch exponent in good agreement with the density of states result.Comment: 15 pages, LaTeX (RevTeX

    Yang-Lee Edge Singularity on a Class of Treelike Lattices

    Full text link
    The density of zeros of the partition function of the Ising model on a class of treelike lattices is studied. An exact closed-form expression for the pertinent critical exponents is derived by using a couple of recursion relations which have a singular behavior near the Yang-Lee edge.Comment: 9 pages AmsTex, 2 eps figures, to appear in J.Phys.

    Oscillatory Behavior of Critical Amplitudes of the Gaussian Model on a Hierarchical Structure

    Full text link
    We studied oscillatory behavior of critical amplitudes for the Gaussian model on a hierarchical structure presented by a modified Sierpinski gasket lattice. This model is known to display non-standard critical behavior on the lattice under study. The leading singular behavior of the correlation length ξ\xi near the critical coupling K=KcK=K_c is modulated by a function which is periodic in lnln(KcK)\ln|\ln(K_c-K)|. We have also shown that the common finite-size scaling hypothesis, according to which for a finite system at criticality ξ\xi should be of the order of the size of system, is not applicable in this case. As a consequence of this, the exact form of the leading singular behavior of ξ\xi differs from the one described earlier (which was based on the finite-size scaling assumption).Comment: 9 pages (REVTEX), 2 figures (EPS), Phys. Rev. E (accepted

    Phase diagram of the penetrable square well-model

    Full text link
    We study a system formed by soft colloidal spheres attracting each other via a square-well potential, using extensive Monte Carlo simulations of various nature. The softness is implemented through a reduction of the infinite part of the repulsive potential to a finite one. For sufficiently low values of the penetrability parameter we find the system to be Ruelle stable with square-well like behavior. For high values of the penetrability the system is thermodynamically unstable and collapses into an isolated blob formed by a few clusters each containing many overlapping particles. For intermediate values of the penetrability the system has a rich phase diagram with a partial lack of thermodynamic consistency.Comment: 6 pages and 5 figure

    Effects of patch size and number within a simple model of patchy colloids

    Get PDF
    We report on a computer simulation and integral equation study of a simple model of patchy spheres, each of whose surfaces is decorated with two opposite attractive caps, as a function of the fraction χ\chi of covered attractive surface. The simple model explored --- the two-patch Kern-Frenkel model --- interpolates between a square-well and a hard-sphere potential on changing the coverage χ\chi. We show that integral equation theory provides quantitative predictions in the entire explored region of temperatures and densities from the square-well limit χ=1.0\chi = 1.0 down to χ0.6\chi \approx 0.6. For smaller χ\chi, good numerical convergence of the equations is achieved only at temperatures larger than the gas-liquid critical point, where however integral equation theory provides a complete description of the angular dependence. These results are contrasted with those for the one-patch case. We investigate the remaining region of coverage via numerical simulation and show how the gas-liquid critical point moves to smaller densities and temperatures on decreasing χ\chi. Below χ0.3\chi \approx 0.3, crystallization prevents the possibility of observing the evolution of the line of critical points, providing the angular analog of the disappearance of the liquid as an equilibrium phase on decreasing the range for spherical potentials. Finally, we show that the stable ordered phase evolves on decreasing χ\chi from a three-dimensional crystal of interconnected planes to a two-dimensional independent-planes structure to a one-dimensional fluid of chains when the one-bond-per-patch limit is eventually reached.Comment: 26 pages, 11 figures, J. Chem. Phys. in pres
    corecore