2,350 research outputs found

    Two Cases of Primary Ectopic Ovarian Pregnancy

    Get PDF
    Primary ovarian pregnancy is one of the rarest varieties of ectopic pregnancies. Patients frequently present with abdominal pain and menstrual irregularities. Intrauterine devices have evolved as probable risk factors. Preoperative diagnosis is challenging but transvaginal sonography has often been helpful. A diagnostic delay may lead to rupture, secondary implantation or operative difficulties. Therefore, awareness of this rare condition is important in reducing the associated risks. Here, we report two cases of primary ovarian pregnancies presenting with acute abdominal pain. Transabdominal ultrasonography failed to hint at ovarian pregnancy in one, while transvaginal sonography aided in the correct diagnosis of the other. Both cases were confirmed by histopathological examinations and were successfully managed by surgery

    Influence of the nature of confinement on the melting of Wigner molecules in quantum dots

    Full text link
    We analyze the quantum melting of two-dimensional Wigner molecules (WM) in confined geometries with distinct symmetries and compare it with corresponding thermal melting. Our findings unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale nXn_X. This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids." An intriguing signature of weakening liquidity with increasing temperature, TT, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting." Our study will help comprehending melting in a variety of experimental traps - from quantum dots to complex plasma.Comment: 14 pages, 9 figure

    Electrophoresis of a polyelectrolyte through a nanopore

    Get PDF
    A hydrodynamic model for determining the electrophoretic speed of a polyelectrolyte through a nanopore is presented. It is assumed that the speed is determined by a balance of electrical and viscous forces arising from within the pore and that classical continuum electrostatics and hydrodynamics may be considered applicable. An explicit formula for the translocation speed as a function of the pore geometry and other physical parameters is obtained and is shown to be consistent with experimental measurements on DNA translocation through nanopores in silicon membranes. Experiments also show a weak dependence of the translocation speed on polymer length that is not accounted for by the present model. It is hypothesized that this is due to secondary effects that are neglected here.Comment: 5 pages, 2 column, 2 figure

    Anomaly Detection for Science DMZs Using System Performance Data

    Get PDF
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone

    Modulation of the local density of states within the dd-density wave theory in the underdoped cuprates

    Full text link
    The low temperature scanning tunneling microscopy spectra in the underdoped regime is analyzed from the perspective of coexisting dd-density wave and d-wave superconducting states. The calculations are carried out in the presence of a low concentration of unitary impurities and within the framework of the fully self-consistent Bogoliubov-de Gennes theory, which allows local modulations of the magnitude of the order parameters in response to the impurities. Our theory captures the essential aspects of the experiments in the underdoped BSCCO at very low temperatures.Comment: 4 pages, 4 eps figures, RevTex4. New added material as well as reference

    Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry

    Get PDF
    A Zee-type neutrino mass matrix model with a badly broken horizontal symmetry SU(3)_H is investigated. By putting a simple ansatz on the symmetry breaking effects of SU(3)_H for transition matrix elements, it is demonstrated that the model can give a nearly bimaximal neutrino mixing with the ratio Δmsolar2/Δmatm2≃2me/mμ=6.7×10−3\Delta m^2_{solar}/\Delta m^2_{atm} \simeq \sqrt{2} m_e/m_{\mu}=6.7 \times 10^{-3}, which are in excellent agreement with the observed data. In the near future, the lepton-number violating decay Z→μ±τ∓Z\to \mu^\pm \tau^\mp will be observed.Comment: 10 pages, no figures, a comment adde
    • …
    corecore