317 research outputs found

    Modelling nematohydrodynamics in liquid crystal devices

    Full text link
    We formulate a lattice Boltzmann algorithm which solves the hydrodynamic equations of motion for nematic liquid crystals. The applicability of the approach is demonstrated by presenting results for two liquid crystal devices where flow has an important role to play in the switching.Comment: 6 pages including 5 figure

    Superradiance-like Electron Transport through a Quantum Dot

    Full text link
    We theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a quantum dot (QD). We first derive a master equation based framework for electron transport in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in the QD. This general tool is then used to study the leakage current through a single QD in a transport setting. We find that, for an initially polarized nuclear system, the proposed setup leads to a strong current peak, in close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin ensembles in QDs.Comment: 21 pages, 10 figure

    Quantum Capacities of Bosonic Channels

    Get PDF
    We investigate the capacity of bosonic quantum channels for the transmission of quantum information. Achievable rates are determined from measurable moments of the channel by showing that every channel can asymptotically simulate a Gaussian channel which is characterized by second moments of the initial channel. We calculate the quantum capacity for a class of Gaussian channels, including channels describing optical fibers with photon losses, by proving that Gaussian encodings are optimal. Along the way we provide a complete characterization of degradable Gaussian channels and those arising from teleportation protocols.Comment: 5 pages, 2 figure

    Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality and Entanglement

    Full text link
    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.Comment: 35 pages, 19 figures. This article provides the full analysis of a scheme proposed in Phys. Rev. Lett. 111, 246802 (2013). v2: version as publishe

    Comparison of bread wheat varieties with different breeding origin under organic and low input management

    Get PDF
    The aims of the study were to compare 37 bread wheat varieties with different breeding origin under conventional and organic farming conditions in Hungary and Austria for three years and to identify traits highly sensitive to management systems that could be separated according to their suggested selecting environments. According to the results, heading date, sensitivity to leaf rust and powdery mildew had high heritability, thus, for economic reasons, it is reasonable to select for these traits in conventional fields even if the selection target is organic agriculture. On the contrary, selection for grain yield, test weight, leaf-inclination and vigorous growth should be done later in the target environment. It was concluded that the selecting environment has measurable effects on the performance of bread wheat varieties. Our results could help organic breeders in their selection work, especially in the continental climatic zone of Europe

    Configuration Methodology for Traffic-Responsive Plan Selection: A Global Perspective

    Get PDF
    Although several studies have shown the potential great benefits of traffic-responsive plan selection (TRPS) control, time-of-day operation continues to be the primary method used to select patterns for signal control applications. This practice could be largely attributed to the minimal guidelines available on the setup of the TRPS mode. An innovative framework for TRPS system setup is provided, and guidelines for implementing TRPS in a simplified manner are shown. The guidelines, developed at Texas Transportation Institute (TTI), use a comprehensive approach that incorporates a multiobjective evolutionary algorithm and a supervised discriminant analysis. Engineers can directly implement the guidelines presented as an initial design. Hardware-in-the-loop simulation is used to illustrate the performance of TTI’s TRPS configuration methodology

    Extremality of Gaussian quantum states

    Full text link
    We investigate Gaussian quantum states in view of their exceptional role within the space of all continuous variables states. A general method for deriving extremality results is provided and applied to entanglement measures, secret key distillation and the classical capacity of Bosonic quantum channels. We prove that for every given covariance matrix the distillable secret key rate and the entanglement, if measured appropriately, are minimized by Gaussian states. This result leads to a clearer picture of the validity of frequently made Gaussian approximations. Moreover, it implies that Gaussian encodings are optimal for the transmission of classical information through Bosonic channels, if the capacity is additive.Comment: 4 page

    HST Imaging of MEGA Microlensing Candidates in M31

    Full text link
    We investigate HSTHST/ACS and WFPC2 images at the positions of five candidate microlensing events from a large survey of variability in M31 (MEGA). Three closely match unresolved sources, and two produce only flux upper limits. All are confined to regions of the color-magnitude diagram where stellar variability is unlikely to be easily confused with microlensing. Red variable stars cannot explain these events (although background supernova are possible for two). If these lenses arise in M31's halo, they are due to masses 0.15<m/M⊙<0.490.15 < m / M_\odot < 0.49 (95% certainty, for a δ\delta-function mass distribution), brown dwarfs for disk lenses, and stellar masses for bulge lenses.Comment: Accepted for publication in ApJL. Higher resolution version available at http://www.astro.columbia.edu/~patrick/hst/hst_ml.pd
    • …
    corecore