54 research outputs found

    Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2_2 bulk crystals

    Get PDF
    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2_2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES) we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method we find that these valence band states at the K\overline{\text{K}} point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2_2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2_2 can be accessed without thinning it down to the monolayer limit

    Kink far below the Fermi level reveals new electron-magnon scattering channel in Fe

    Full text link
    Many properties of real materials can be modeled using ab initio methods within a single-particle picture. However, for an accurate theoretical treatment of excited states, it is necessary to describe electron-electron correlations including interactions with bosons: phonons, plasmons, or magnons. In this work, by comparing spin- and momentum-resolved photoemission spectroscopy measurements to many-body calculations carried out with a newly developed first-principles method, we show that a kink in the electronic band dispersion of a ferromagnetic material can occur at much deeper binding energies than expected (E_b=1.5 eV). We demonstrate that the observed spectral signature reflects the formation of a many-body state that includes a photohole bound to a coherent superposition of renormalized spin-flip excitations. The existence of such a many-body state sheds new light on the physics of the electron-magnon interaction which is essential in fields such as spintronics and Fe-based superconductivity.Comment: 6 pages, 2 figure

    Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction

    Get PDF
    The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision

    Direct observation of the band gap transition in atomically thin ReS2_2

    Full text link
    ReS2_2 is considered as a promising candidate for novel electronic and sensor applications. The low crystal symmetry of the van der Waals compound ReS2_2 leads to a highly anisotropic optical, vibrational, and transport behavior. However, the details of the electronic band structure of this fascinating material are still largely unexplored. We present a momentum-resolved study of the electronic structure of monolayer, bilayer, and bulk ReS2_2 using k-space photoemission microscopy in combination with first-principles calculations. We demonstrate that the valence electrons in bulk ReS2_2 are - contrary to assumptions in recent literature - significantly delocalized across the van der Waals gap. Furthermore, we directly observe the evolution of the valence band dispersion as a function of the number of layers, revealing a significantly increased effective electron mass in single-layer crystals. We also find that only bilayer ReS2_2 has a direct band gap. Our results establish bilayer ReS2_2 as a advantageous building block for two-dimensional devices and van der Waals heterostructures

    Bulk Electronic Structure of Lanthanum Hexaboride (LaB6) by Hard X-ray Angle-Resolved Photoelectron Spectroscopy

    Full text link
    In the last decade rare-earth hexaborides have been investigated for their fundamental importance in condensed matter physics, and for their applications in advanced technological fields. Among these compounds, LaB6_6 has a special place, being a traditional d-band metal without additional f- bands. In this paper we investigate the bulk electronic structure of LaB6_6 using hard x-ray photoemission spectroscopy, measuring both core-level and angle-resolved valence-band spectra. By comparing La 3d core level spectra to cluster model calculations, we identify well-screened peak residing at a lower binding energy compared to the main poorly-screened peak; the relative intensity between these peaks depends on how strong the hybridization is between La and B atoms. We show that the recoil effect, negligible in the soft x-ray regime, becomes prominent at higher kinetic energies for lighter elements, such as boron, but is still negligible for heavy elements, such as lanthanum. In addition, we report the bulk-like band structure of LaB6_6 determined by hard x-ray angle-resolved photoemission spectroscopy (HARPES). We interpret HARPES experimental results by the free-electron final-state calculations and by the more precise one-step photoemission theory including matrix element and phonon excitation effects. In addition, we consider the nature and the magnitude of phonon excitations in HARPES experimental data measured at different temperatures and excitation energies. We demonstrate that one step theory of photoemission and HARPES experiments provide, at present, the only approach capable of probing true bulk-like electronic band structure of rare-earth hexaborides and strongly correlated materials.Comment: Total 26 pages, Total 11 figure

    Does Exchange Splitting persist above TCT_C? A spin-resolved photoemission study of EuO

    Full text link
    The electronic structure of the ferromagnetic semiconductor EuO is investigated by means of spin- and angle-resolved photoemission spectroscopy and density functional theory (GGA+UU). Our spin-resolved data reveals that, while the macroscopic magnetization of the sample vanishes at the Curie temperature, the exchange splitting of the O 2pp band persists up to TCT_{C}. Thus, we provide evidence for short-range magnetic order being present at the Curie temperature

    Characterization of free standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy

    Full text link
    Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS), and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with angstrom precision. We determined that: i) the exposure to air induced the formation of an InAsO4_4 layer on top of the stoichiometric InAs(QM); ii) the top interface between the air-side InAsO4_4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; iii) the bottom interface between the InAs(QM) and the native oxide SiO2_2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2_2/(Si/Mo) substrate was determined by HXPS. The value of VBO=0.2±0.04VBO = 0.2 \pm 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2_2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.Comment: three figure

    Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation

    Get PDF
    We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects

    Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation

    Get PDF
    We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects
    corecore