1,101 research outputs found
Keck Spectroscopy of Dwarf Elliptical Galaxies in the Virgo Cluster
Keck spectroscopy is presented for four dwarf elliptical galaxies in the
Virgo Cluster. At this distance, the mean velocity and velocity dispersion are
well resolved as a function of radius between 100 to 1000 pc, allowing a clear
separation between nuclear and surrounding galaxy light. We find a variety of
dispersion profiles for the inner regions of these objects, and show that none
of these galaxies is rotationally flattened.Comment: 4 pages, 2 figures, to appear in the proceedings of the Yale
Cosmology Workshop "The Shapes of Galaxies and their Halos", (ed. P.
Natarjan
Local Group Dwarf Elliptical Galaxies: II. Stellar Kinematics to Large Radii in NGC 147 and NGC 185
We present kinematic and metallicity profiles for the M31 dwarf elliptical
(dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most
extensive spectroscopic radial coverage for any dE galaxy, extending to a
projected distance of eight half-light radii (8 r_eff = 14'). We achieve this
coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442
member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast
to previous studies, we find that both dEs have significant internal rotation.
We measure a maximum rotational velocity of 17+/-2 km/s for NGC 147 and 15+/-5
km/s for NGC 185. The velocity dispersions decrease gently with radius with an
average dispersion of 16+/-1 km/s for NGC 147 and 24+/-1 km/s for NGC 185. Both
dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for
a radial metallicity gradient. We construct two-integral axisymmetric dynamical
models and find that the observed kinematical profiles cannot be explained
without modest amounts of non-baryonic dark matter. We measure central
mass-to-light ratios of ML_V = 4.2+/-0.6 and ML_V = 4.6+/-0.6 for NGC 147 and
NGC 185, respectively. Both dE galaxies are consistent with being primarily
flattened by their rotational motions, although some anisotropic velocity
dispersion is needed to fully explain their observed shapes. The velocity
profiles of all three Local Group dEs (NGC 147, NGC 185 and NGC 205) suggest
that rotation is more prevalent in the dE galaxy class than previously assumed,
but is often manifest only at several times the effective radius. Since all dEs
outside the Local Group have been probed to only inside the effective radius,
this opens the door for formation mechanisms in which dEs are transformed or
stripped versions of gas-rich rotating progenitor galaxies.Comment: 16 pages, 7 figures. accepted to A
Stellar Kinematics of the Andromeda II Dwarf Spheroidal Galaxy
We present kinematical profiles and metallicity for the M31 dwarf spheroidal
(dSph) satellite galaxy Andromeda II (And II) based on Keck DEIMOS spectroscopy
of 531 red giant branch stars. Our kinematical sample is among the largest for
any M31 satellite and extends out to two effective radii (r_eff = 5.3' = 1.1
kpc). We find a mean systemic velocity of -192.4+-0.5 km/s and an average
velocity dispersion of sigma_v = 7.8+-1.1 km/s. While the rotation velocity
along the major axis of And II is nearly zero (<1 km/s), the rotation along the
minor axis is significant with a maximum rotational velocity of v_max=8.6+-1.8
km/s. We find a kinematical major axis, with a maximum rotational velocity of
v_max=10.9+-2.4 km/s, misaligned by 67 degrees to the isophotal major axis. And
II is thus the first dwarf galaxy with evidence for nearly prolate rotation
with a v_max/sigma_v = 1.1, although given its ellipticity of epsilon = 0.10,
this object may be triaxial. We measured metallicities for a subsample of our
data, finding a mean metallicity of [Fe/H] = -1.39+- 0.03 dex and an internal
metallicity dispersion of 0.72+-0.03 dex. We find a radial metallicity gradient
with metal-rich stars more centrally concentrated, but do not observe a
significant difference in the dynamics of two metallicity populations. And II
is the only known dwarf galaxy to show minor axis rotation making it a unique
system whose existence offers important clues on the processes responsible for
the formation of dSphs.Comment: 14 pages, 10 figures, 4 tables, accepted for publication in Ap
The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem
We present Keck/DEIMOS spectroscopy of stars in 8 of the newly discovered
ultra-faint dwarf galaxies around the Milky Way. We measure the velocity
dispersions of Canes Venatici I and II, Ursa Major I and II, Coma Berenices,
Hercules, Leo IV and Leo T from the velocities of 18 - 214 stars in each galaxy
and find dispersions ranging from 3.3 to 7.6 km/s. The 6 galaxies with absolute
magnitudes M_V < -4 are highly dark matter-dominated, with mass-to-light ratios
approaching 1000. The measured velocity dispersions are inversely correlated
with their luminosities, indicating that a minimum mass for luminous galactic
systems may not yet have been reached. We also measure the metallicities of the
observed stars and find that the 6 brightest of the ultra-faint dwarfs extend
the luminosity-metallicity relationship followed by brighter dwarfs by 2 orders
of magnitude in luminosity; several of these objects have mean metallicities as
low as [Fe/H] = -2.3 and therefore represent some of the most metal-poor known
stellar systems. We detect metallicity spreads of up to 0.5 dex in several
objects, suggesting multiple star formation epochs. Having established the
masses of the ultra-faint dwarfs, we re-examine the missing satellite problem.
After correcting for the sky coverage of the SDSS, we find that the ultra-faint
dwarfs substantially alleviate the discrepancy between the predicted and
observed numbers of satellites around the Milky Way, but there are still a
factor of ~4 too few dwarf galaxies over a significant range of masses. We show
that if galaxy formation in low-mass dark matter halos is strongly suppressed
after reionization, the simulated circular velocity function of CDM subhalos
can be brought into approximate agreement with the observed circular velocity
function of Milky Way satellite galaxies. [slightly abridged]Comment: 22 pages, 15 figures (12 in color), 6 tables, minor revisions in
response to referee report. Accepted for publication in Ap
The Quenching of the Ultra-faint Dwarf Galaxies in the Reionization Era
We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolution spectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W. M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z ~ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ~ 6 (12.8 Gyr ago) and 100% of the stars forming by z ~ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark-matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe
The Baryon Content of Extremely Low Mass Dwarf Galaxies
We investigate the gas content and baryonic Tully-Fisher relationship for
extremely low luminosity dwarf galaxies in the absolute magnitude range -13.5 >
Mr > -16. The sample is selected from the Sloan Digital Sky Survey and consists
of 101 galaxies for which we have obtained follow-up HI observations using the
Arecibo Observatory and Green Bank Telescope. This represents the largest
homogeneous sample of dwarfs at low luminosities with well-measured HI and
optical properties. The sample spans a range of environments, from dense groups
to truly isolated galaxies. The average neutral gas fraction is f_gas=0.6,
significantly exceeding that of typical gas-rich galaxies at higher
luminosities. Dwarf galaxies are therefore less efficient at turning gas into
stars over their lifetimes. The strong environmental dependence of the gas
fraction distribution demonstrates that while internal processes can reduce the
gas fractions to roughly f_gas=0.4, external processes are required to fully
remove gas from a dwarf galaxy. The average rotational velocity of our sample
is vrot=50 km/s. Including more massive galaxies from the literature, we fit a
baryonic Tully-Fisher slope of M_baryon \propto vrot^(3.70+/- 0.15). This slope
compares well with CDM models that assume an equal baryon to dark matter ratio
at all masses. While gas stripping or other processes may modify the baryon to
dark matter ratio for dwarfs in the densest environments, the majority of dwarf
galaxies in our sample have not preferentially lost significant baryonic mass
relative to more massive galaxies.Comment: 33 pages, 8 figures. Accepted to ApJ. Data available at
http://www.ociw.edu/~mgeha/researc
A Stellar Mass Threshold for Quenching of Field Galaxies
We demonstrate that dwarf galaxies (10^7 < M_stellar < 10^9 Msun) with no
active star formation are extremely rare (<0.06%) in the field. Our sample is
based on the NASA-Sloan Atlas which is a re-analysis of the Sloan Digital Sky
Survey Data Release 8. We examine the relative number of quenched versus star
forming dwarf galaxies, defining quenched galaxies as having no Halpha emission
(EW_Halpha < 2 AA) and a strong 4000AA-break. The fraction of quenched dwarf
galaxies decreases rapidly with increasing distance from a massive host,
leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of
a massive host galaxy to be in the field. We demonstrate that there is a
stellar mass threshold of M_stellar < 1.0x10^9 Msun below which quenched
galaxies do not exist in the field. Below this threshold, we find that none of
the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show
evidence for recent star formation. Correcting for volume effects, this
corresponds to a 1-sigma upper limit on the quenched fraction of 0.06%. In more
dense environments, quenched galaxies account for 23% of the dwarf population
over the same stellar mass range. The majority of quenched dwarf galaxies
(often classified as dwarf elliptical galaxies) are within 2 virial radii of a
massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond
4 virial radii. Thus, for galaxies with stellar mass less than 1.0x10^9 Msun,
ending star-formation requires the presence of a more massive neighbor,
providing a stringent constraint on models of star formation feedback.Comment: 9 pages, 6 figures, accepted to Ap
Darwin Tames an Andromeda Dwarf: Unraveling the Orbit of NGC 205 Using a Genetic Algorithm
NGC 205, a close satellite of the M31 galaxy, is our nearest example of a
dwarf elliptical galaxy. Photometric and kinematic observations suggest that
NGC 205 is undergoing tidal distortion from its interaction with M31. Despite
earlier attempts, the orbit and progenitor properties of NGC 205 are not well
known. We perform an optimized search for these unknowns by combining a genetic
algorithm with restricted N-body simulations of the interaction. This approach,
coupled with photometric and kinematic observations as constraints, allows for
an effective exploration of the parameter space. We represent NGC 205 as a
static Hernquist potential with embedded massless test particles that serve as
tracers of surface brightness. We explore 3 distinct, initially stable
configurations of test particles: cold rotating disk, warm rotating disk, and
hot, pressure-supported spheroid. Each model reproduces some, but not all, of
the observed features of NGC 205, leading us to speculate that a rotating
progenitor with substantial pressure support could match all of the
observables. Furthermore, plausible combinations of mass and scale length for
the pressure-supported spheroid progenitor model reproduce the observed
velocity dispersion profile. For all 3 models, orbits that best match the
observables place the satellite 11+/-9 kpc behind M31 moving at very large
velocities: 300-500 km/s on primarily radial orbits. Given that the observed
radial component is only 54 km/s, this implies a large tangential motion for
NGC 205, moving from the NW to the SE. These results suggest NGC 205 is not
associated with the stellar arc observed to the NE of NGC 205. Furthermore, NGC
205's velocity appears to be near or greater than its escape velocity,
signifying that the satellite is likely on its first M31 passage.Comment: 34 pages, 20 figures, accepted for publication in the Astrophysical
Journal, A pdf version with high-resolution figures may be obtained from
http://www.ucolick.org/~kirsten/ms.pd
On time dilation in quasar light curves
In this paper we set out to measure time dilation in quasar light curves. In
order to detect the effects of time dilation, sets of light curves from two
monitoring programmes are used to construct Fourier power spectra covering
timescales from 50 days to 28 years. Data from high and low redshift samples
are compared to look for the changes expected from time dilation. The main
result of the paper is that quasar light curves do not show the effects of time
dilation. Several explanations are discussed, including the possibility that
time dilation effects are exactly offset by an increase in timescale of
variation associated with black hole growth, or that the variations are caused
by microlensing in which case time dilation would not be expected.Comment: 8 pages, 5 figures. Accepted for publication in MNRAS. Published
online 9 April 2010
- âŠ