1,101 research outputs found

    Keck Spectroscopy of Dwarf Elliptical Galaxies in the Virgo Cluster

    Get PDF
    Keck spectroscopy is presented for four dwarf elliptical galaxies in the Virgo Cluster. At this distance, the mean velocity and velocity dispersion are well resolved as a function of radius between 100 to 1000 pc, allowing a clear separation between nuclear and surrounding galaxy light. We find a variety of dispersion profiles for the inner regions of these objects, and show that none of these galaxies is rotationally flattened.Comment: 4 pages, 2 figures, to appear in the proceedings of the Yale Cosmology Workshop "The Shapes of Galaxies and their Halos", (ed. P. Natarjan

    Local Group Dwarf Elliptical Galaxies: II. Stellar Kinematics to Large Radii in NGC 147 and NGC 185

    Get PDF
    We present kinematic and metallicity profiles for the M31 dwarf elliptical (dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most extensive spectroscopic radial coverage for any dE galaxy, extending to a projected distance of eight half-light radii (8 r_eff = 14'). We achieve this coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442 member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast to previous studies, we find that both dEs have significant internal rotation. We measure a maximum rotational velocity of 17+/-2 km/s for NGC 147 and 15+/-5 km/s for NGC 185. The velocity dispersions decrease gently with radius with an average dispersion of 16+/-1 km/s for NGC 147 and 24+/-1 km/s for NGC 185. Both dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for a radial metallicity gradient. We construct two-integral axisymmetric dynamical models and find that the observed kinematical profiles cannot be explained without modest amounts of non-baryonic dark matter. We measure central mass-to-light ratios of ML_V = 4.2+/-0.6 and ML_V = 4.6+/-0.6 for NGC 147 and NGC 185, respectively. Both dE galaxies are consistent with being primarily flattened by their rotational motions, although some anisotropic velocity dispersion is needed to fully explain their observed shapes. The velocity profiles of all three Local Group dEs (NGC 147, NGC 185 and NGC 205) suggest that rotation is more prevalent in the dE galaxy class than previously assumed, but is often manifest only at several times the effective radius. Since all dEs outside the Local Group have been probed to only inside the effective radius, this opens the door for formation mechanisms in which dEs are transformed or stripped versions of gas-rich rotating progenitor galaxies.Comment: 16 pages, 7 figures. accepted to A

    Stellar Kinematics of the Andromeda II Dwarf Spheroidal Galaxy

    Full text link
    We present kinematical profiles and metallicity for the M31 dwarf spheroidal (dSph) satellite galaxy Andromeda II (And II) based on Keck DEIMOS spectroscopy of 531 red giant branch stars. Our kinematical sample is among the largest for any M31 satellite and extends out to two effective radii (r_eff = 5.3' = 1.1 kpc). We find a mean systemic velocity of -192.4+-0.5 km/s and an average velocity dispersion of sigma_v = 7.8+-1.1 km/s. While the rotation velocity along the major axis of And II is nearly zero (<1 km/s), the rotation along the minor axis is significant with a maximum rotational velocity of v_max=8.6+-1.8 km/s. We find a kinematical major axis, with a maximum rotational velocity of v_max=10.9+-2.4 km/s, misaligned by 67 degrees to the isophotal major axis. And II is thus the first dwarf galaxy with evidence for nearly prolate rotation with a v_max/sigma_v = 1.1, although given its ellipticity of epsilon = 0.10, this object may be triaxial. We measured metallicities for a subsample of our data, finding a mean metallicity of [Fe/H] = -1.39+- 0.03 dex and an internal metallicity dispersion of 0.72+-0.03 dex. We find a radial metallicity gradient with metal-rich stars more centrally concentrated, but do not observe a significant difference in the dynamics of two metallicity populations. And II is the only known dwarf galaxy to show minor axis rotation making it a unique system whose existence offers important clues on the processes responsible for the formation of dSphs.Comment: 14 pages, 10 figures, 4 tables, accepted for publication in Ap

    The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem

    Get PDF
    We present Keck/DEIMOS spectroscopy of stars in 8 of the newly discovered ultra-faint dwarf galaxies around the Milky Way. We measure the velocity dispersions of Canes Venatici I and II, Ursa Major I and II, Coma Berenices, Hercules, Leo IV and Leo T from the velocities of 18 - 214 stars in each galaxy and find dispersions ranging from 3.3 to 7.6 km/s. The 6 galaxies with absolute magnitudes M_V < -4 are highly dark matter-dominated, with mass-to-light ratios approaching 1000. The measured velocity dispersions are inversely correlated with their luminosities, indicating that a minimum mass for luminous galactic systems may not yet have been reached. We also measure the metallicities of the observed stars and find that the 6 brightest of the ultra-faint dwarfs extend the luminosity-metallicity relationship followed by brighter dwarfs by 2 orders of magnitude in luminosity; several of these objects have mean metallicities as low as [Fe/H] = -2.3 and therefore represent some of the most metal-poor known stellar systems. We detect metallicity spreads of up to 0.5 dex in several objects, suggesting multiple star formation epochs. Having established the masses of the ultra-faint dwarfs, we re-examine the missing satellite problem. After correcting for the sky coverage of the SDSS, we find that the ultra-faint dwarfs substantially alleviate the discrepancy between the predicted and observed numbers of satellites around the Milky Way, but there are still a factor of ~4 too few dwarf galaxies over a significant range of masses. We show that if galaxy formation in low-mass dark matter halos is strongly suppressed after reionization, the simulated circular velocity function of CDM subhalos can be brought into approximate agreement with the observed circular velocity function of Milky Way satellite galaxies. [slightly abridged]Comment: 22 pages, 15 figures (12 in color), 6 tables, minor revisions in response to referee report. Accepted for publication in Ap

    The Quenching of the Ultra-faint Dwarf Galaxies in the Reionization Era

    Get PDF
    We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolution spectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W. M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z ~ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ~ 6 (12.8 Gyr ago) and 100% of the stars forming by z ~ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark-matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe

    The Baryon Content of Extremely Low Mass Dwarf Galaxies

    Get PDF
    We investigate the gas content and baryonic Tully-Fisher relationship for extremely low luminosity dwarf galaxies in the absolute magnitude range -13.5 > Mr > -16. The sample is selected from the Sloan Digital Sky Survey and consists of 101 galaxies for which we have obtained follow-up HI observations using the Arecibo Observatory and Green Bank Telescope. This represents the largest homogeneous sample of dwarfs at low luminosities with well-measured HI and optical properties. The sample spans a range of environments, from dense groups to truly isolated galaxies. The average neutral gas fraction is f_gas=0.6, significantly exceeding that of typical gas-rich galaxies at higher luminosities. Dwarf galaxies are therefore less efficient at turning gas into stars over their lifetimes. The strong environmental dependence of the gas fraction distribution demonstrates that while internal processes can reduce the gas fractions to roughly f_gas=0.4, external processes are required to fully remove gas from a dwarf galaxy. The average rotational velocity of our sample is vrot=50 km/s. Including more massive galaxies from the literature, we fit a baryonic Tully-Fisher slope of M_baryon \propto vrot^(3.70+/- 0.15). This slope compares well with CDM models that assume an equal baryon to dark matter ratio at all masses. While gas stripping or other processes may modify the baryon to dark matter ratio for dwarfs in the densest environments, the majority of dwarf galaxies in our sample have not preferentially lost significant baryonic mass relative to more massive galaxies.Comment: 33 pages, 8 figures. Accepted to ApJ. Data available at http://www.ociw.edu/~mgeha/researc

    A Stellar Mass Threshold for Quenching of Field Galaxies

    Full text link
    We demonstrate that dwarf galaxies (10^7 < M_stellar < 10^9 Msun) with no active star formation are extremely rare (<0.06%) in the field. Our sample is based on the NASA-Sloan Atlas which is a re-analysis of the Sloan Digital Sky Survey Data Release 8. We examine the relative number of quenched versus star forming dwarf galaxies, defining quenched galaxies as having no Halpha emission (EW_Halpha < 2 AA) and a strong 4000AA-break. The fraction of quenched dwarf galaxies decreases rapidly with increasing distance from a massive host, leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of a massive host galaxy to be in the field. We demonstrate that there is a stellar mass threshold of M_stellar < 1.0x10^9 Msun below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1-sigma upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0x10^9 Msun, ending star-formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.Comment: 9 pages, 6 figures, accepted to Ap

    Darwin Tames an Andromeda Dwarf: Unraveling the Orbit of NGC 205 Using a Genetic Algorithm

    Full text link
    NGC 205, a close satellite of the M31 galaxy, is our nearest example of a dwarf elliptical galaxy. Photometric and kinematic observations suggest that NGC 205 is undergoing tidal distortion from its interaction with M31. Despite earlier attempts, the orbit and progenitor properties of NGC 205 are not well known. We perform an optimized search for these unknowns by combining a genetic algorithm with restricted N-body simulations of the interaction. This approach, coupled with photometric and kinematic observations as constraints, allows for an effective exploration of the parameter space. We represent NGC 205 as a static Hernquist potential with embedded massless test particles that serve as tracers of surface brightness. We explore 3 distinct, initially stable configurations of test particles: cold rotating disk, warm rotating disk, and hot, pressure-supported spheroid. Each model reproduces some, but not all, of the observed features of NGC 205, leading us to speculate that a rotating progenitor with substantial pressure support could match all of the observables. Furthermore, plausible combinations of mass and scale length for the pressure-supported spheroid progenitor model reproduce the observed velocity dispersion profile. For all 3 models, orbits that best match the observables place the satellite 11+/-9 kpc behind M31 moving at very large velocities: 300-500 km/s on primarily radial orbits. Given that the observed radial component is only 54 km/s, this implies a large tangential motion for NGC 205, moving from the NW to the SE. These results suggest NGC 205 is not associated with the stellar arc observed to the NE of NGC 205. Furthermore, NGC 205's velocity appears to be near or greater than its escape velocity, signifying that the satellite is likely on its first M31 passage.Comment: 34 pages, 20 figures, accepted for publication in the Astrophysical Journal, A pdf version with high-resolution figures may be obtained from http://www.ucolick.org/~kirsten/ms.pd

    On time dilation in quasar light curves

    Full text link
    In this paper we set out to measure time dilation in quasar light curves. In order to detect the effects of time dilation, sets of light curves from two monitoring programmes are used to construct Fourier power spectra covering timescales from 50 days to 28 years. Data from high and low redshift samples are compared to look for the changes expected from time dilation. The main result of the paper is that quasar light curves do not show the effects of time dilation. Several explanations are discussed, including the possibility that time dilation effects are exactly offset by an increase in timescale of variation associated with black hole growth, or that the variations are caused by microlensing in which case time dilation would not be expected.Comment: 8 pages, 5 figures. Accepted for publication in MNRAS. Published online 9 April 2010
    • 

    corecore