12 research outputs found
Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State
We estimate the resource requirements, the total number of physical qubits
and computational time, required to compute the ground state energy of a 1-D
quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of
the system size and the numerical precision. This estimate is based on
analyzing the impact of fault-tolerant quantum error correction in the context
of the Quantum Logic Array (QLA) architecture. Our results show that due to the
exponential scaling of the computational time with the desired precision of the
energy, significant amount of error correciton is required to implement the TIM
problem. Comparison of our results to the resource requirements for a
fault-tolerant implementation of Shor's quantum factoring algorithm reveals
that the required logical qubit reliability is similar for both the TIM problem
and the factoring problem.Comment: 19 pages, 8 figure