664 research outputs found

    Dynamics and Scaling of Noise-Induced Domain Growth

    Full text link
    The domain growth processes originating from noise-induced nonequilibrium phase transitions are analyzed, both for non-conserved and conserved dynamics. The existence of a dynamical scaling regime is established in the two cases, and the corresponding growth laws are determined. The resulting universal dynamical scaling scenarios are those of Allen-Cahn and Lifshitz-Slyozov, respectively. Additionally, the effect of noise sources on the behaviour of the pair correlation function at short distances is studied.Comment: 11 pages (including 13 figures) LaTeX file. Accepted in EPJ

    Spatial Coherence Resonance near Pattern-Forming Instabilities

    Full text link
    The analogue of temporal coherence resonance for spatial degrees of freedom is reported. Specifically, we show that spatiotemporal noise is able to optimally extract an intrinsic spatial scale in nonlinear media close to (but before) a pattern-forming instability. This effect is observed in a model of pattern-forming chemical reaction and in the Swift-Hohenberg model of fluid convection. In the latter case, the phenomenon is described analytically via an approximate approach.Comment: 4 pages, 4 figure

    Coherence and synchronization in diode-laser arrays with delayed global coupling

    Full text link
    The dynamics of a semiconductor-laser array whose individual elements are coupled in a global way through an external mirror is numerically analysed. A coherent in-phase solution is seen to be preferred by the system at intermediate values of the feedback coupling strength. At low values of this parameter, a strong amplification of the spontaneous emission noise is observed. A tendency towards chaos synchronization is also observed at large values of the feedback strength.Comment: 8 pages, LaTeX, 6 PS figures, to appear in International Journal of Bifurcation and Chao

    Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling

    Get PDF
    We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension d with an excitable membrane of dimension d-1 produces a self-sustained oscillatory behavior. An analytical explanation of the phenomenon is provided for d=1. Moreover, in-phase and anti-phase synchronization of oscillations are found numerically in one and two dimensions. This novel dynamic instability could be used by biological systems such as cells, where the dynamics on the cellular membrane is necessarily different from that of the cytoplasmic bulk.Comment: Accepted for publication in Physical Review Letter

    Localization lengths of ultrathin disordered gold and silver nanowires

    Full text link
    The localization lengths of ultrathin disordered Au and Ag nanowires are estimated by calculating the wire conductances as functions of wire lengths. We study Ag and Au monoatomic linear chains, and thicker Ag wires with very small cross sections. For the monoatomic chains we consider two types of disorder: bounded random fluctuations of the interatomic distances, and the presence of random substitutional impurities. The effect of impurity atoms on the nanowire conductance is much stronger. Our results show that electrical transport in ultrathin disordered wires may occur in the strong localization regime, and with relatively small amounts of disorder the localization lengths may be rather small. The localization length dependence on wire thickness is investigated for Ag nanowires with different impurity concentrations.Comment: 6 pages, postscript figures included, submitted to PR
    • …
    corecore