629 research outputs found

    Emergence and evolution of the renin-angiotensin-aldosterone system

    Get PDF
    The renin-angiotensin-aldosterone system (RAAS) is not the sole, but perhaps the most important volume regulator in vertebrates. To gain insights into the function and evolution of its components, we conducted a phylogenetic analysis of its main related genes. We found that important parts of the system began to appear with primitive chordates and tunicates and that all major components were present at the divergence of bony fish, with the exception of the Mas receptor. The Mas receptor first appears after the bony-fish/tetrapod divergence. This phase of evolutionary innovation happened about 400 million years ago. We found solid evidence that angiotensinogen made its appearance in cartilage fish. The presence of several RAAS genes in organisms that lack all the components shows that these genes have had other ancestral functions outside of their current role. Our analysis underscores the utility of sequence comparisons in the study of evolution. Such analyses may provide new hypotheses as to how and why in today's population an increased activity of the RAAS frequently leads to faulty salt and volume regulation, hypertension, and cardiovascular diseases, opening up new and clinically important research areas for evolutionary medicine

    Pancreatic Atrophy in Hepatocellular Carcinoma Patients Receiving Long-Term Treatment with Sorafenib

    Get PDF
    Objective: To date, sorafenib is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC). Pancreatic atrophy has recently been reported in 2 patients as a novel side effect after long-term sorafenib treatment. Methods: We retrospectively analyzed clinical and radiological data of patients with advanced HCC with long-term treatment of sorafenib (median 279 days, range 153–826 days). Pancreata were semi-manually segmented section by section to calculate the pancreas volumes before and under sorafenib treatment. Results: Sorafenib reduced pancreatic volume in 18/19 (95%) HCC patients with a mean pancreatic volume loss of 25% (p = 0.002). Pancreatic volume loss depended on the dose (r = 0.36) and exposure time of sorafenib (r = 0.35) and was detectable as early as after 3 months of sorafenib treatment and already after a cumulative sorafenib dose of <100 g. Median overall survival was 13.2 months (range 7.8–31.3 months) but did not correlate with sorafenibinduced pancreatic volume reduction (hazard ratio 1.002, 95% confidence interval 0.981–1.060, p = 0.24). Conclusion: We could confirm pancreatic atrophy as a novel adverse event of sorafenib therapy in HCC patients, correlating with sorafenib dose and exposure time

    Orthotopic liver transplantation in human-immunodeficiency-virus-positive patients in Germany

    Get PDF
    Objectives: This summary evaluates the outcomes of orthotopic liver transplantation (OLT) of HIV-positive patients in Germany. Methods: Retrospective chart analysis of HIV-positive patients, who had been liver-transplanted in Germany between July 1997 and July 2011. Results: 38 transplantations were performed in 32 patients at 9 German transplant centres. The reasons for OLT were end-stage liver disease (ESLD) and/or liver failure due to hepatitis C (HCV) (n = 19), hepatitis B (HBV) (n = 10), multiple viral infections of the liver (n = 2) and Budd-Chiari-Syndrome. In July 2011 19/32 (60%) of the transplanted patients were still alive with a median survival of 61 months (IQR (interquartile range): 41-86 months). 6 patients had died in the early post-transplantation period from septicaemia (n = 4), primary graft dysfunction (n = 1), and intrathoracal hemorrhage (n = 1). Later on 7 patients had died from septicaemia (n = 2), delayed graft failure (n = 2), recurrent HCC (n = 2), and renal failure (n = 1). Recurrent HBV infection was efficiently prevented in 11/12 patients; HCV reinfection occurred in all patients and contributed considerably to the overall mortality. Conclusions: Overall OLT is a feasible approach in HIV-infected patients with acceptable survival rates in Germany. Reinfection with HCV still remains a major clinical challenge in HIV/HCV coinfection after OLT

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity

    Get PDF
    Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC50 ∼2 × 10−12 M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance

    A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data

    Get PDF
    The COVID-19 pandemic has worldwide individual and socioeconomic consequences. Chest computed tomography has been found to support diagnostics and disease monitoring. A standardized approach to generate, collect, analyze, and share clinical and imaging information in the highest quality possible is urgently needed. We developed systematic, computer-assisted and context-guided electronic data capture on the FDA-approved mint LesionTM software platform to enable cloud-based data collection and real-time analysis. The acquisition and annotation include radiological findings and radiomics performed directly on primary imaging data together with information from the patient history and clinical data. As proof of concept, anonymized data of 283 patients with either suspected or confirmed SARS-CoV-2 infection from eight European medical centers were aggregated in data analysis dashboards. Aggregated data were compared to key findings of landmark research literature. This concept has been chosen for use in the national COVID-19 response of the radiological departments of all university hospitals in Germany

    Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib

    Get PDF
    BACKGROUND: XIAP (X-linked inhibitor of apoptosis protein) is an anti-apoptotic protein exerting its activity by binding and suppressing caspases. As XIAP is overexpressed in several tumours, in which it apparently contributes to chemoresistance, and because its activity in vivo is antagonised by second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis-binding protein with low pI, small molecules mimicking SMAC (so called SMAC-mimetics) can potentially overcome tumour resistance by promoting apoptosis. METHODS: Three homodimeric compounds were synthesised tethering a monomeric SMAC-mimetic with different linkers and their affinity binding for the baculoviral inhibitor repeats domains of XIAP measured by fluorescent polarisation assay. The apoptotic activity of these molecules, alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or Bortezomib, was tested in melanoma cell lines by MTT viability assays and western blot analysis of activated caspases. RESULTS: We show that in melanoma cell lines, which are typically resistant to chemotherapeutic agents, XIAP knock-down sensitises cells to TRAIL treatment in vitro, also favouring the accumulation of cleaved caspase-8. We also describe a new series of 4-substituted azabicyclo[5.3.0] alkane monomeric and dimeric SMAC-mimetics that target various members of the IAP family and powerfully synergise at submicromolar concentrations with TRAIL in inducing cell death. Finally, we show that the simultaneous administration of newly developed SMAC-mimetics with Bortezomib potently triggers apoptosis in a melanoma cell line resistant to the combined effect of SMAC-mimetics and TRAIL. CONCLUSION: Hence, the newly developed SMAC-mimetics effectively synergise with TRAIL and Bortezomib in inducing cell death. These findings warrant further preclinical studies in vivo to verify the anticancer effectiveness of the combination of these agents

    TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt

    Get PDF
    The majority of leukaemic cells are resistant to apoptosis induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we show that sublethal concentrations of arsenic trioxide (ATO) specifically enhanced TRAIL-induced apoptosis in leukaemic but not in other tumour cell lines. The combination of ATO and TRAIL synergistically enhanced cleavage of caspase-8, which was blocked by the caspase inhibitor IETD.fmk as well as in cells deficient for caspase-8, suggesting a requirement for the death-inducing signalling complex. Arsenic trioxide led to increased cell surface expression of DR5 (death receptor 5), inhibition of the serine/threonine kinase Akt and downregulation of the short isoform of FLIP (FLICE-inhibitory protein, FLIPS). Inhibition of the phosphatidylinositol 3 kinase (PI3K) was equally efficient in sensitising leukaemic cells to TRAIL with similar effects on DR5 and FLIPS expression, suggesting that ATO may in part act through inhibition of the PI3K/Akt signalling pathway. These results indicate that the enhancement in TRAIL-mediated apoptosis induced by ATO is due to alteration in the levels of multiple components and regulators of the death receptor-mediated pathway. These findings offer a promising and novel strategy involving a combination of TRAIL and ATO, or more specific Akt inhibitors in the treatment of various haematopoietic malignancies
    corecore