1,918 research outputs found
Applications of recurrent neural networks in batch reactors. Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature
Although nonlinear inverse and predictive control techniques based on artificial neural networks have been extensively applied to nonlinear systems, their use in real time applications is generally limited. In this paper neural inverse and predictive control systems have been applied to the real-time control of the heat transfer fluid temperature in a pilot chemical reactor. The training of the inverse control system is carried out using both generalised and specialised learning. This allows the preparation of weights of the controller acting in real-time and appropriate performances of inverse neural controller can be achieved. The predictive control system makes use of a neural network to calculate the control action. Thus, the problems related to the high computational effort involved in nonlinear model-predictive control systems are reduced. The performance of the neural controllers is compared against the self-tuning PID controller currently installed in the plant. The results show that neural-based controllers improve the performance of the real plant.Publicad
Applications of recurrent neural networks in batch reactors. Part I: NARMA modelling of the dynamic behaviour of the heat transfer fluid
This paper is focused on the development of nonlinear models, using artificial neural networks, able to provide appropriate predictions when acting as process simulators. The dynamic behaviour of the heat transfer fluid temperature in a jacketed chemical reactor has been selected as a case study. Different structures of NARMA (Non-linear ARMA) models have been studied. The experimental results have allowed to carry out a comparison between the different neural approaches and a first-principles model. The best neural results are obtained using a parallel model structure based on a recurrent neural network architecture, which guarantees better dynamic approximations than currently employed neural models. The results suggest that parallel models built up with recurrent networks can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of the heating/cooling circuits which change from batch installation to installation.Publicad
Multi-step learning rule for recurrent neural models: an application to time series forecasting
Multi-step prediction is a difficult task that has attracted increasing interest in recent years. It tries to achieve predictions several steps ahead into the future starting from current information. The interest in this work is the development of nonlinear neural models for the purpose of building multi-step time series prediction schemes. In that context, the most popular neural models are based on the traditional feedforward neural networks. However, this kind of model may present some disadvantages when a long-term prediction problem is formulated because they are trained to predict only the next sampling time. In this paper, a neural model based on a partially recurrent neural network is proposed as a better alternative. For the recurrent model, a learning phase with the purpose of long-term prediction is imposed, which allows to obtain better predictions of time series in the future. In order to validate the performance of the recurrent neural model to predict the dynamic behaviour of the series in the future, three different data time series have been used as study cases. An artificial data time series, the logistic map, and two real time series, sunspots and laser data. Models based on feedforward neural networks have also been used and compared against the proposed model. The results suggest than the recurrent model can help in improving the prediction accuracy.Publicad
Lazy learning in radial basis neural networks: A way of achieving more accurate models
Radial Basis Neural Networks have been successfully used in a large number of applications having in its rapid convergence time one of its most important advantages. However, the level of generalization is usually poor and very dependent on the quality of the training data because some of the training patterns can be redundant or irrelevant. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be approximated. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains an artificial regression problem and two time series prediction problems. Results have been compared to standard training method using the complete training data set and the new method shows better generalization abilities.Publicad
How the selection of training patterns can improve the generalization capability in Radial Basis Neural Networks
It has been shown that the selection of the most similar training patterns to generalize a new sample can improve the generalization capability of Radial Basis Neural Networks. In previous works, authors have proposed a learning method that automatically selects the most appropriate training patterns for the new sample to be predicted. However, the amount of selected patterns or the neighborhood choice around the new sample might influence in the generalization accuracy. In addition, that neighborhood must be established according to the dimensionality of the input patterns. This work handles these aspects and presents an extension of a previous work of the authors in order to take those subjects into account. A real time-series prediction problem has been chosen in order to validate the selective learning method for a n-dimensional problem.Publicad
AMPSO: A new Particle Swarm Method for Nearest Neighborhood Classification
Nearest prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper, we first use the standard particle swarm optimizer (PSO) algorithm to find those prototypes. Second, we present a new algorithm, called adaptive Michigan PSO (AMPSO) in order to reduce the dimension of the search space and provide more flexibility than the former in this application. AMPSO is based on a different approach to particle swarms as each particle in the swarm represents a single prototype in the solution. The swarm does not converge to a single solution; instead, each particle is a local classifier, and the whole swarm is taken as the solution to the problem. It uses modified PSO equations with both particle competition and cooperation and a dynamic neighborhood. As an additional feature, in AMPSO, the number of prototypes represented in the swarm is able to adapt to the problem, increasing as needed the number of prototypes and classes of the prototypes that make the solution to the problem. We compared the results of the standard PSO and AMPSO in several benchmark problems from the University of California, Irvine, data sets and find that AMPSO always found a better solution than the standard PSO. We also found that it was able to improve the results of the Nearest Neighbor classifiers, and it is also competitive with some of the algorithms most commonly used for classification.This work was supported by the Spanish founded research Project MSTAR::UC3M,
Ref: TIN2008-06491-C04-03 and CAM Project CCG06-UC3M/ESP-0774.Publicad
PNNARMA model: an alternative to phenomenological models in chemical reactors
This paper is focused on the development of non-linear neural models able to provide appropriate predictions when acting as process simulators. Parallel identification models can be used for this purpose. However, in this work it is shown that since the parameters of parallel identification models are estimated using multilayer feed-forward networks, the approximation of dynamic systems could be not suitable. The solution proposed in this work consists of building up parallel models using a particular recurrent neural network. This network allows to identify the parameter sets of the parallel model in order to generate process simulators. Hence, it is possible to guarantee better dynamic predictions. The dynamic behaviour of the heat transfer fluid temperature in a jacketed chemical reactor has been selected as a case study. The results suggest that parallel models based on the recurrent neural network proposed in this work can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of the heating/cooling circuits.Publicad
A comparison between the Pittsburgh and Michigan approaches for the binary PSO algorithm
IEEE Congress on Evolutionary Computation. Edimburgo, 5 september 2005This paper shows the performance of the binary PSO algorithm as a classification system. These systems are classified in two different perspectives: the Pittsburgh and the Michigan approaches. In order to implement the Michigan approach binary PSO algorithm, the standard PSO dynamic equations are modified, introducing a repulsive force to favor particle competition. A dynamic neighborhood, adapted to classification problems, is also defined. Both classifiers are tested using a reference set of problems, where both classifiers achieve better performance than many classification techniques. The Michigan PSO classifier shows clear advantages over the Pittsburgh one both in terms of success rate and speed. The Michigan PSO can also be generalized to the continuous version of the PSO
Building nearest prototype classifiers using a Michigan approach PSO
IEEE Swarm Intelligence Symposium. Honolulu, HI, 1-5 april 2007This paper presents an application of particle swarm optimization (PSO) to continuous classification problems, using a Michigan approach. In this work, PSO is used to process training data to find a reduced set of prototypes to be used to classify the patterns, maintaining or increasing the accuracy of the nearest neighbor classifiers. The Michigan approach PSO represents each prototype by a particle and uses modified movement rules with particle competition and cooperation that ensure particle diversity. The result is that the particles are able to recognize clusters, find decision boundaries and achieve stable situations that also retain adaptation potential. The proposed method is tested both with artificial problems and with three real benchmark problems with quite promising results
An adaptive Michigan approach PSO for nearest prototype classification
Proceedings of: Second International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2007, La Manga del Mar Menor, Spain, June 18-21, 2007.Nearest Prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper we develop a new algorithm (called AMPSO), based on the Particle Swarm Optimization (PSO) algorithm, that can be used to find those prototypes. Each particle in a swarm represents a single prototype in the solution; the swarm evolves using modified PSO equations with both particle competition and cooperation. Experimentation includes an artificial problem and six common application problems from the UCI data sets. The results show that the AMPSO algorithm is able to find solutions with a reduced number of prototypes that classify data with comparable or better accuracy than the 1-NN classifier. The algorithm can also be compared or improves the results of many classical algorithms in each of those problems; and the results show that AMPSO also performs significantly better than any tested algorithm in one of the problems.This article has been financed by the Spanish founded research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-02 and CAM project UC3M-TEC-05-029
- …