11,200 research outputs found

    Irritable bowel syndrome and gluten-related disorders

    Get PDF
    Background: Irritable bowel syndrome (IBS) is frequently associated with celiac disease (CD) and nonceliac gluten/wheat sensitivity (NCGS/NCWS), but epidemiological and pathophysiological aspects are still unclear. Furthermore, a gluten-free diet (GFD) can positively influence IBS symptoms. Methods: A comprehensive online search for IBS related to CD, NCGS and GFD was made using the Pubmed, Medline and Cochrane databases. Results: Although a systematic screening for CD in IBS is not recommended, CD prevalence can be increased in diarrhea-predominant IBS patients. On the other hand, IBS symptoms can be persistent in treated CD patients, and their prevalence tends to decrease on a GFD. IBS symptoms may overlap and be similar to those associated to nonceliac gluten and/or wheat sensitivity. Increased gut permeability could explain the gluten/wheat effects in IBS patients. Finally, a GFD could improve symptoms in a subgroup of IBS patients. Conclusions: The possible interplay between IBS and gluten-related disorders represents a scientifically and clinically challenging issue. Further studies are needed to confirm these data and better clarify the involved pathophysiological mechanisms

    Ligulate inïŹ‚orescence of Helianthus x multiïŹ‚orus, cv. Soleild’Or, correlates with a mis-regulation of a CYCLOIDEA gene characterised by insertion of a transposable element

    Get PDF
    Members of CYCLOIDEA (CYC)/TEOSINTE BRANCHED1 (TB1) transcription factor family are essential to control flower symmetry and inflorescence architecture. In the Helianthus annuus genome, ten CYC/TB1 genes have been identified. Studies performed on mutants recognised HaCYC2c as one of the key players controlling zygomorphism in sunflower. We identified CYC2c genes in the diploid Helianthus decapetalus (HdCYC2c) and in the interspecific hybrid Helianthus × multiflorus (H × mCYC2cA and H × mCYC2cB), a triploid (2n = 3× = 51), originated from unreduced eggs of H. decapetalus fertilised by reduced H. annuus male gametes. Phylogenetic analysis showed that HdCYC2c and H × mCYC2c were placed within a CYC2 subclade together with HaCYC2c but distinct from it. The present data showed that in H. × multiflorus the allele derived from H. annuus is deleted or highly modified.\ud The H. × multiflorus taxon exists as radiate and ligulate inflorescence types. We analysed CYC2c expression in H. decapetalus and in the cultivar ‘Soleil d'Or’ of H. × multiflorus, a ligulate inflorescence type with actinomorphic corolla of disk flowers transformed into a zygomorphic ray‐like corolla. In H. decapetalus, the HdCYC2c gene showed differential expression between developing flower types, being up‐regulated in the corolla of ray flowers in comparison to the disk flower corolla. In H. × multiflorus, an insertion of 865 bp, which is part of a CACTA transposable element, was found in the 5â€Č‐untranslated region (5â€Č‐UTR) of H × mCYC2cB. This insertion could promote, even with epigenetic mechanisms, ectopic expression of the gene throughout the inflorescence, resulting in the observed loss of actinomorphy and originating a ligulate head

    Gastroparesis: New insights into an old disease

    Get PDF
    Gastroparesis (Gp) is a chronic disease characterized by a delayed gastric emptying in the absence of mechanical obstruction. Although this condition has been reported in the literature since the mid-1900s, only recently has there been renewed clinical and scientific interest in this disease, which has a potentially great impact on the quality of life. The aim of this review is to explore the pathophysiological, diagnostic and therapeutical aspects of Gp according to the most recent evidence. A comprehensive online search for Gp was carried out using MEDLINE and EMBASE. Gp is the result of neuromuscular abnormalities of the gastric motor function. There is evidence that patients with idiopathic and diabetic Gp may display a reduction in nitrergic inhibitory neurons and in interstitial cells of Cajal and/or telocytes. As regards diagnostic approach, 99-Technetium scintigraphy is currently considered to be the gold standard for Gp. Its limits are a lack of standardization and a mild risk of radiation exposure. The C13 breath testing is a valid and safe alternative method. 13C acid octanoic and the 13C Spirulina platensis recently approved by the Food and Drug Administration are the most commonly used diagnostic kits. The wireless motility capsule is a promising technique, but its use is limited by costs and scarce availability in many countries. Finally, therapeutic strategies are related to the clinical severity of Gp. In mild and moderate Gp, dietary modification and prokinetic agents are generally sufficient. Metoclopramide is the only drug approved by the Food and Drug Administration for Gp. However, other older and new prokinetics and antiemetics can be considered. As a second-line therapy, tricyclic antidepressants and cannabinoids have been proposed. In severe cases the normal nutritional approach can be compromised and artificial nutrition may be needed. In drug-unresponsive Gp patients some alternative strategies (endoscopic, electric stimulation or surgery) are available

    Distribution of HLA-DPB1, -DQB1 -DQA1 alleles among Sardinian celiac patients.

    Get PDF
    The Sardinian population in many aspects differs from other Caucasoid populations, particularly for its degree of homogeneity. For this reason we have studied 50 adult Sardinian patients with celiac disease (CD) and 50 control healthy Sardinian individuals by RFLP analysis and by extensive oligotyping for 17 HLA-DPB 1, 8-DQB I and 9-DQA 1 alleles, and established their -DPB I alleles and -DQB I -DQA I genotypes. The heterodimer HLA-DQB 1 *0201/-DQA 1 *0501, present in 96% of our patients, is strongly associated with CD susceptibility, confirming published reports. On the other hand we found in 11 of 50 probands (22%) the presence of the allele -DQB 1 *05021 DQA1*0102. This genotype is extremely rare in other Caucasian populations and appears to confer limited protection in CD Sardinian patients

    Direct evaluation of turbine isentropic efficiency in turbochargers: Cfd assisted design of an innovative measuring technique

    Get PDF
    Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine. However, in the case of a turbocharger radial inflow turbine, isentropic efficiency, directly evaluated starting from measurement of thermodynamic parameters at the inlet and outlet sections, can give significant errors. This inaccuracy is mainly related to the difficulty of a correct evaluation of the turbine outlet temperature due to the non-uniform distribution of flow field and temperature at the measuring section. This work is the follow up of a previous publication where an intensive measurement campaign was performed to obtain a reliable measurement of the turbine outlet temperature. To this aim, a hand-made 3-hole probe (unlike most of the measuring probes available on the market, which are considered as intrusive ) was adopted to perform measurement of the flow field, pressure and temperature downstream the turbine with special reference to different radial and tangential positions in two sections located near and far from the outlet machine, allowing the evaluation of the efficiency through local enthalpy fluxes across the turbine in cold and hot conditions upstream the turbine. The comparison between results obtained through the local measurements and those achieved through a direct measurement of turbine outlet temperature by three probes inserted in pipe with a different protrusion, have highlighted that heat transfer effects across the pipes and across the turbocharger components play an important role on the estimation of temperature profile at the outlet section. In order to put some light on this aspect, CFD simulations have been performed to estimate the impact of the heat transfer and flow distribution on the estimation of the isentropic efficiency. The OpenFOAM\uae code has been adopted to simulate the actual turbine geometry resorting to multi reference frame (MRF) strategies, instead of mesh motion strategies, to characterize the flow pattern downstream of the turbine. Moreover, CFD analysis was used to design a specific device, whose goal was the dissipation of flow structures dominated by vorticity, achieving in this way a uniform distribution of the flow and temperature fields at the measuring section. This will result in a much more reliable evaluation of the turbine efficienc

    Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach

    Get PDF
    Clostridium cellulovorans is among the most promising candidates for consolidated bioprocessing (CBP) of cellulosic biomass to liquid biofuels (ethanol, butanol). C. cellulovorans metabolizes all the main plant polysaccharides and mainly produces butyrate. Since most butyrate and butanol biosynthetic reactions from acetyl-CoA are common, introduction of single heterologous alcohol/aldehyde dehydrogenase can divert the branching-point intermediate (butyryl-CoA) towards butanol production in this strain. However, engineering C. cellulovorans metabolic pathways towards industrial utilization requires better understanding of its metabolism. The present study aimed at improving comprehension of cellulose metabolism in C. cellulovorans by comparing growth kinetics, substrate consumption/product accumulation and whole-cell soluble proteome (data available via ProteomeXchange, identifier PXD015487) with those of the same strain grown on a soluble carbohydrate, glucose, as the main carbon source. Growth substrate-dependent modulations of the central metabolism were detected, including regulation of several glycolytic enzymes, fermentation pathways (e.g. hydrogenase, pyruvate formate lyase, phosphate transacetylase) and nitrogen assimilation (e.g. glutamate dehydrogenase). Overexpression of hydrogenase and increased ethanol production by glucose-grown bacteria suggest a more reduced redox state. Higher energy expenditure seems to occur in cellulose-grown C. cellulovorans (likely related to overexpression and secretion of (hemi-)cellulases), which induces up-regulation of ATP synthetic pathways, e.g. acetate production and ATP synthase. Significance: C. cellulovorans can metabolize all the main plant polysaccharides (cellulose, hemicelluloses and pectins) and, unlike other well established cellulolytic microorganisms, can produce butyrate. C. cellulovorans is therefore among the most attractive candidates for direct fermentation of lignocellulose to high-value chemicals and, especially, n-butanol, i.e. one of the most promising liquid biofuels for the future. Recent studies aimed at engineering n-butanol production in C. cellulovorans represent milestones towards production of biofuels through one-step fermentation of lignocellulose but also indicated that more detailed understanding of the C. cellulovorans central carbon metabolism is essential to refine metabolic engineering strategies towards improved n-butanol production in this strain. The present study helped identifying key genes associated with specific catabolic reactions and indicated modulations of central carbon metabolism (including redox and energy balance) associated with cellulose consumption. This information will be useful to determine key enzymes and possible metabolic bottlenecks to be addressed towards improved metabolic engineering of this strain

    A pattern of cerebral perfusion anomalies between major depressive disorder and Hashimoto thyroiditis

    Get PDF
    Background. This study aims to evaluate relationship between three different clinical conditions: Major Depressive Disorders (MDD), Hashimoto Thyroiditis (HT) and reduction in regional Cerebral Blood Flow (rCBF) in order to explore the possibility that patients with HT and MDD have specific pattern(s) of cerebral perfusion. Methods. Design: Analysis of data derived from two separate data banks. Sample: 54 subjects, 32 with HT (29 women, mean age 38.8 ± 13.9); 22 without HT (19 women, mean age 36.5 ± 12.25). Assessment: Psychiatric diagnosis was carried out by Simplified Composite International Diagnostic Interview (CIDIS) using DSM-IV categories; cerebral perfusion was measured by 99 mTc-ECD SPECT. Statistical analysis was done through logistic regression. Results. MDD appears to be associated with left frontal hypoperfusion, left temporal hypoperfusion, diffuse hypoperfusion and parietal perfusion asymmetry. A statistically significant association between parietal perfusion asymmetry and MDD was found only in the HT group. Conclusion. In HT, MDD is characterized by a parietal flow asymmetry. However, the specificity of rCBF in MDD with HT should be confirmed in a control sample with consideration for other health conditions. Moreover, this should be investigated with a longitudinally designed study in order to determine a possible pathogenic cause. Future studies with a much larger sample size should clarify whether a particular perfusion pattern is associated with a specific course or symptom cluster of MDD

    Decoding the Genomic Landscape of Pomegranate: A Genome-Wide Analysis of Transposable Elements and Their Structural Proximity to Functional Genes

    Get PDF
    Transposable elements (TEs) significantly drive dynamic changes that characterize genome evolution. However, understanding the variability associated with TE insertions among different cultivars remains challenging. The pomegranate (Punica granatum L.) has yet to be extensively studied regarding the roles of TEs in the diversification of cultivars. Herein, we explored the genome distribution of TEs and its potential functional implications among four pomegranate cultivars, ‘Bhagwa’, ‘Dabenzi’, ‘Taishanhong’ and ‘Tunisia’, whose genome sequences are available. A total of 8404 full-length TEs were isolated. The content of TEs varied among the cultivars, ranging from 41.67% of ‘Taishanhong’ to 52.45% of ‘Bhagwa’. In all cultivars, the Gypsy superfamily of retrotransposons accounted for a larger genome proportion than the Copia superfamily. Seventy-three full-length TEs were found at the same genomic loci in all four cultivars. By contrast, 947, 297, 311, and 874 TEs were found exclusively in ‘Bhagwa’, ‘Dabenzi’, ‘Taishanhong’, and ‘Tunisia’ cultivars, respectively. Phylogenetic clustering based on the presence of TE insertions in specific loci reflected the geographic origins of the cultivars. The insertion time profiles of LTR-REs were studied in the four cultivars. Shared elements across the four cultivars exhibited, on average, a more ancient insertion date than those exclusive to three, two, or one cultivars. The majority of TEs were located within 1000 bp from the nearest gene. This localization was observed for 57% of DNA TEs and 55% of long-terminal repeat retrotransposons (LTR-RE). More than 10% of TEs resulted inserted within genes. Concerning DNA TEs, 3.91% of insertions occurred in introns, while 2.42% occurred in exons. As to LTR-REs, 4% of insertions occurred in exons and 1.98% in introns. Functional analysis of the genes lying close to TEs was performed to infer if differences in TE insertion can affect the fruit quality. Two TE insertions were found close to two genes encoding 4-coumarate--CoA ligase, an enzyme involved in the phenylpropanoid pathway. Moreover, a TIR/Mariner element was found within the exon of a gene encoding anthocyanidin reductase in the ‘Tunisia’ genotype, crucial in the biosynthesis of flavan-3-ols and proanthocyanidins, strictly correlated with the nutraceutical properties of pomegranate. Although functional and metabolomic studies are essential to elucidate the consequences of TE insertions, these results contribute to advancing our comprehension of the role of TEs in pomegranate genomics, providing insights for crop breeding
    • 

    corecore