60,576 research outputs found

    Seeking togetherness: moving toward a comparative evaluation framework in an interdisciplinary DIY networking project

    Get PDF
    There is renewed interest in community networks as a mechanism for local neighbourhoods to find their voice and maintain local ownership of knowledge. In a post-Snowden, big data, age of austerity there is both widespread questioning of what happens to public generated data shared over ‘free’ services such as Facebook, and also a renewed focus on self-provisioning where there are gaps in digital service provision. In this paper we introduce an EU funded collaborative project (‘MAZI’) that is exploring how Do-It-Yourself approaches to building community networks might foster social cohesion, knowledge sharing and sustainable living through four pilots across Europe. A key challenge is to develop a shared evaluation approach that will allow us to make sense of what we are learning across highly diverse local situations and disciplinary approaches. In this paper we describe our initial approaches and the challenges we face

    Varieties of liberalism: Anglo-Saxon capitalism in crisis?

    Get PDF
    ‘Global financial crisis’ is an inaccurate description of the current upheaval in the world’s financial markets. The initial banking crisis did not affect all countries to the same degree. Notably, while the US and UK banking systems were badly hit, those of the other two major Anglo-Saxon economies, Canada and Australia, remain largely unscathed and have even gained in terms of global market share. The national business systems and comparative corporate governance literatures underscore the similarities among these four ‘liberal market economies’ (LMEs) and would predict similar trajectories. This paper investigates the reasons behind the differing performance of the Anglo-Saxon banking systems, which defy a verdict of failure of the LME variety of capitalism as such

    Consistent analysis of neutral- and charged-current neutrino scattering off carbon

    Full text link
    Background: Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for correct interpretation of results of ongoing and planned oscillation experiments. Purpose: Clarify possible source of disagreement between recent measurements of the cross sections on carbon. Method: Nuclear effects in (anti)neutrino scattering off carbon nucleus are described using the spectral function approach. The effect of two- and multi-nucleon final states is accounted for by applying an effective value of the axial mass, fixed to 1.23 GeV. Neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes are treated on equal footing. Results: The differential and total cross sections for the energy ranging from a few hundreds of MeV to 100 GeV are obtained and compared to the available data from the BNL E734, MiniBooNE, and NOMAD experiments. Conclusions: Nuclear effects in NCE and CCQE scattering seem to be very similar. Within the spectral function approach, the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of NCE and CCQE data does not seem to support the contribution of multi-nucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.Comment: 14 pages, 9 figures, detailed discussion of the role of FSI is adde

    Entanglement quantification by local unitaries

    Full text link
    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "mirror entanglement". They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary for the associated mirror entanglement to be faithful, i.e. to vanish on and only on separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the "stellar mirror entanglement" associated to traceless local unitaries with nondegenerate spectrum and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of [Giampaolo and Illuminati, Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension, and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.Comment: 13 pages, 3 figures. Improved and generalized proof of monotonicity of the mirror and stellar entanglemen

    The effect of stellar-mass black holes on the structural evolution of massive star clusters

    Full text link
    We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant number of black holes are retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass segregated cluster.Comment: Accepted for publication in MNRAS Letters; 2 figures, 1 tabl

    Handling uncertainties in background shapes: the discrete profiling method

    Full text link
    A common problem in data analysis is that the functional form, as well as the parameter values, of the underlying model which should describe a dataset is not known a priori. In these cases some extra uncertainty must be assigned to the extracted parameters of interest due to lack of exact knowledge of the functional form of the model. A method for assigning an appropriate error is presented. The method is based on considering the choice of functional form as a discrete nuisance parameter which is profiled in an analogous way to continuous nuisance parameters. The bias and coverage of this method are shown to be good when applied to a realistic example.Comment: Accepted by J.Ins

    Quarkonium spin structure in lattice NRQCD

    Get PDF
    Numerical simulations of the quarkonium spin splittings are done in the framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading order in the velocity expansion the spin splittings are of O(MQv4)O(M_Q v^4), where MQM_Q is the renormalized quark mass and v2v^2 is the mean squared quark velocity. A systematic analysis is done of all next-to-leading order corrections. This includes the addition of O(MQv6)O(M_Q v^6) relativistic interactions, and the removal of O(a2MQv4)O(a^2 M_Q v^4) discretization errors in the leading-order interactions. Simulations are done for both S- and P-wave mesons, with a variety of heavy quark actions and over a wide range of lattice spacings. Two prescriptions for the tadpole improvement of the action are also studied in detail: one using the measured value of the average plaquette, the other using the mean link measured in Landau gauge. Next-to-leading order interactions result in a very large reduction in the charmonium splittings, down by about 60% from their values at leading order. There are further indications that the velocity expansion may be poorly convergent for charmonium. Prelimary results show a small correction to the hyperfine splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    The Low Surface Brightness Extent of the Fornax Cluster

    Get PDF
    We have used a large format CCD camera to survey the nearby Fornax cluster and its immediate environment for low luminosity low surface brightness galaxies. Recent observations indicate that these are the most dark matter dominated galaxies known and so they are likely to be a good tracer of the dark matter in clusters. We have identified large numbers of these galaxies consistent with a steep faint end slope of the luminosity function (alpha~ -2) down to MB ~ -12. These galaxies contribute almost the same amount to the total cluster light as the brighter galaxies and they have a spatial extent that is some four times larger. They satisfy two of the important predictions of N-body hierarchical simulations of structure formation using dark halos. The luminosity (mass ?) function is steep and the mass distribution is more extended than that defined by the brighter galaxies. We also find a large concentration of low surface brightness galaxies around the nearby galaxy NGC1291.Comment: 16 pages, 6 figure
    • …
    corecore