170 research outputs found

    Ocular manifestations and pathology of adult T-cell leukemia/lymphoma associated with human T-lymphotropic virus type 1

    Get PDF
    The human T-cell lymphotropic virus type 1 (HTLV-1), endemic in defined geographical areas around the world, is recognized as the etiologic agent of adult T-cell leukemia/lymphoma (ATL), or HTLV-1. ATL is a rare adult onset T-cell malignancy that is characterized by the presence of ATL flower cells with T-cell markers, HTLV-1 antibodies in the serum, and monoclonal integration of HTLV-1 provirus in affected cells. Ocular manifestations associated with HTLV-1 virus infection have been reported and include HTLV-1 uveitis and keratoconjunctivitis sicca, but reports of ocular involvement in ATL are exceedingly rare. This article describes the ocular manifestations and pathology of ATL. We also report for the first time a case of a 34-year-old male with systemic ATL and prominent atypical lymphoid cell infiltration in the choroid. To our knowledge, this is the first report defining prominent choroidal involvement as a distinct ocular manifestation of ATL. ATL may masquerade as a variety of other conditions, and molecular techniques involving microdissection and PCR have proven to be critical diagnostic tools. International collaboration will be needed to better understand the presentation and diagnosis of this rare malignancy

    Ciliated muconodular papillary tumors of the lung with KRAS/BRAF/AKT1 mutation

    Get PDF
    Background: Ciliated muconodular papillary tumors (CMPTs) are newly recognized rare peripheral lung nodules that are histologically characterized by ciliated columnar, goblet, and basal cells. Although recent studies have shown that CMPTs constitute a neoplastic disease, the complete histogenesis of CMPTs is not fully understood and molecular data are limited. Methods: We reviewed four cases of CMPT and performed immunohistochemical and genomic analyses to establish CMPT profiles. Results: All cases were positive for hepatocyte nuclear factor-4α and mucin 5B and negative for programmed death ligand 1 expression, as determined by immunohistochemistry. The genetic analysis revealed three pathogenic mutations (BRAF V600E, AKT1 E17K, and KRAS G12D), with the KRAS mutation reported here for the first time. Conclusion: Histological and genetic profiles indicate that CMPTs are likely neoplastic and exhibit features similar to mucinous adenocarcinoma. This suggests that some CMPTs may be a precursor lesion of mucinous adenocarcinoma

    Benign Orbital Tumors with Bone Destruction in Children

    Get PDF
    Purpose: To present rare benign orbital tumors with bone destruction in children who could not be diagnosed presurgically and may simulate malignant ones. Methods: A retrospective review of cases. Clinical, operative and pathological records in all children with a diagnosis of benign orbital tumors who showed remarkable bone destruction at a tertiary Ophthalmic Center in China between Jan 1, 2000 and Dec 31, 2009 were reviewed. All patients had definitive histopathologic diagnosis. Results: Eight patients with benign orbital tumors showed obvious bone destruction, including six cases of eosinophilic granuloma, one case of leiomyoma and one case of primary orbital intraosseous hemangioma. Among them, three patients were females and five patients were males. Tumors were unilateral in all cases, with both the right and left side affected equally. Age ranged from 3 to 7 years (mean 4.1 years). Symptom duration ranged from 1 to 5 weeks (mean 4.8 weeks). Eyelid swelling and palpable mass were the most common complaint. There was no evidence for multifocal involvement in cases with eosinophilic granuloma. Among six patients with eosinophilic granuloma, two were treated with low dose radiation (10 Gy), three received systemic corticosteroid and one was periodically observed only after incisional biopsy or subtotal curettage. There was no postoperative therapeutic intervention in the two patients with leiomyoma and intraosseous hemangioma. All eight patients regained normal vision without local recurrence after a mean follow-up time o

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer

    Get PDF
    Background: The presence of the TMPRSS2-ERG fusion gene in prostate tumors has recently been associated with an aggressive phenotype, as well as recurrence and death from prostate cancer. These associations suggest the hypothesis that the gene fusion may be used as a prognostic indicator for prostate cancer. Methods: In this study, fluorescent in situ hybridization (FISH) assays were used to assess TMPRSS2-ERG fusion status in a group of 214 prostate cancer cases from two population-based studies. The FISH assays were designed to detect both fusion type (deletion vs. translocation) and the number of fusion copies (single vs. multiple). Genotyping of four ERG and one TMPRSS2 SNPs using germline DNA was also performed in a sample of the cases (n = 127). Results: Of the 214 tumors scored for the TMPRSS2-ERG fusion, 64.5% were negative and 35.5% were positive for the fusion. Cases with the TMPRSS2-ERG fusion did not exhibit reduced prostate cancer survival (HR = 0.92, 95% CI = 0.22-3.93), nor was there a significant difference in causespecific survival when stratifying by translocation or deletion (HR = 0.84, 95% CI = 0.23-3.12) or by the number of retained fusion copies (HR = 1.22, 95% CI = .45-3.34). However, evidence for reduced prostate cancer-specific survival was apparent in those cases whose tumor had multiple copies of the fusion. The variant T allele of the TMPRSS2 SNP, rs12329760, was positively associated with TMPRSS2-ERG fusion by translocation (p = 0.05) and with multiple copies of the gene fusion (p = 0.03). Conclusion: If replicated, the results presented here may provide insight into the mechanism by which the TMPRSS2-ERG gene fusion arises and also contribute to diagnostic evaluations for determining the subset of men who will go on to develop metastatic prostate cancer.This work was supported by NIH grants RO1 CA56678, RO1 CA114524, and P50 CA97186; additional support was provided by the Fred Hutchinson Cancer Research Center and the Intramural Program of the National Human Genome Research Institute

    Epigenetic Changes of CXCR4 and Its Ligand CXCL12 as Prognostic Factors for Sporadic Breast Cancer

    Get PDF
    Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%). Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a biomarker for prognosis in breast cancer

    CXCR4/CXCL12 Participate in Extravasation of Metastasizing Breast Cancer Cells within the Liver in a Rat Model

    Get PDF
    INTRODUCTION: Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer. METHODS: Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation. Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat model and under shRNA inhibition of CXCR4. RESULTS: In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p,0.05). This effect was dependent on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly metastatic MDA-MB-231 cells (p < 0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation. CONCLUSION: Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.Claudia Wendel, André Hemping-Bovenkerk, Julia Krasnyanska, Sören Torge Mees, Marina Kochetkova, Sandra Stoeppeler and Jörg Haie
    corecore