23,886 research outputs found

    Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    Full text link
    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.Comment: 32 pages, 8 figures, 1 table. Version accepted by Nuclear Physics

    The genealogy of judgement: towards a deep history of academic freedom

    Get PDF
    The classical conception of academic freedom associated with Wilhelm von Humboldt and the rise of the modern university has a quite specific cultural foundation that centres on the controversial mental faculty of 'judgement'. This article traces the roots of 'judgement' back to the Protestant Reformation, through its heyday as the signature feature of German idealism, and to its gradual loss of salience as both a philosophical and a psychological concept. This trajectory has been accompanied by a general shrinking in the scope of academic freedom from the promulgation of world-views to the offering of expert opinion

    Baryon Number Transport in a Cosmic QCD-Phase Transition

    Get PDF
    We investigate the transport of baryon number across phase boundaries in a putative first order QCD-phase transition. Two independent phenomenological models are employed to estimate the baryon penetrability at the phase boundary: chromoelectric flux tube models; and an analogy to baryon-baryon coalescence in nuclear physics. Our analysis indicates that baryon transport across phase boundaries may be order of magnitude more efficient than other work has suggested. We discuss the substantial uncertainties involved in estimating baryon penetrability at phase boundaries.Comment: 25 pages, 4 figures (available upon request by mail or fax), plain tex, UCRL-JC-00000

    The surprising influence of late charged current weak interactions on Big Bang Nucleosynthesis

    Full text link
    The weak interaction charged current processes (νe+n↔p+e−\nu_e+n\leftrightarrow p+e^-, νˉe+p↔n+e+\bar\nu_e +p\leftrightarrow n+e^+, n↔p+e−+νˉen\leftrightarrow p+e^-+\bar\nu_e) interconvert neutrons and protons in the early universe and have significant influence on Big Bang Nucleosynthesis (BBN) light-element abundance yields, particulary that for 4He^{4}{\rm He}. We demonstrate that the influence of these processes is still significant even when they operate well below temperatures T∼0.7 MeVT\sim0.7\,{\rm MeV} usually invoked for "weak freeze-out," and in fact down nearly into the alpha-particle formation epoch (T≈0.1 MeVT \approx 0.1\,{\rm MeV}). This physics is correctly captured in commonly used BBN codes, though this late-time, low-temperature persistent effect of the isospin-changing weak processes, and the sensitivity of the associated rates to lepton energy distribution functions and blocking factors are not widely appreciated. We quantify this late-time influence by analyzing weak interaction rate dependence on the neutron lifetime, lepton energy distribution functions, entropy, the proton-neutron mass difference, and Hubble expansion rate. The effects we point out here render BBN a keen probe of any beyond-standard-model physics that alters lepton number/energy distributions, even subtly, in epochs of the early universe all the way down to near T=100 keVT=100\,{\rm keV}.Comment: 27 pages, 8 figure

    Estimates of Stellar Weak Interaction Rates for Nuclei in the Mass Range A=65-80

    Get PDF
    We estimate lepton capture and emission rates, as well as neutrino energy loss rates, for nuclei in the mass range A=65-80. These rates are calculated on a temperature/density grid appropriate for a wide range of astrophysical applications including simulations of late time stellar evolution and x-ray bursts. The basic inputs in our single particle and empirically inspired model are i) experimentally measured level and weak decay information, ii) estimates of matrix elements for allowed experimentally-unmeasured transitions based on the systematics of experimentally observed allowed transitions, and iii) estimates of the centroids of the GT resonances motivated by shell model calculations in the fp shell as well as by (n,p) and (p,n) experiments. Transitions involving Fermi resonances (isobaric analog states) are also included and dominate the rates for many interesting proton rich nuclei for which an experimentally-determined ground state lifetime is unavailable. To compare our results with more detailed shell model based calculations we also calculate weak rates for nuclei in the mass range A=60-65 for which Langanke and Martinez-Pinedo have provided rates. The typical deviation in the electron capture and B- decay rates for these ~30 nuclei is less than a factor of two or three for a wide range of temperature and density appropriate for pre-supernova stellar evolution. We also discuss some subtleties associated with the partition functions used in calculations of stellar weak rates and show that the proper treatment of the partition functions is essential for estimating high temperature beta decay rates. Partition functions based on un-converged Lanczos calculations can result in estimates of high temperature beta decay rates that are systematically low.Comment: Tables of rates for nuclei in the mass range A=66-110 are available from J. Prue

    An evaluation of the utilization of remote sensing in resource and environmental management of the Chesapeake Bay region

    Get PDF
    A nine-month study was conducted to assess the effectiveness of the NASA Wallops Chesapeake Bay Ecological Program in remote sensing. The study consisted of a follow-up investigation and information analysis of actual cases in which remote sensing was utilized by management and research personnel in the Chesapeake Bay region. The study concludes that the NASA Wallops Chesapeake Bay Ecological Program is effective, both in terms of costs and performance
    • …
    corecore