661 research outputs found

    Construction Industry Hesitation in Accepting Wearable Sensing Devices to Enhance Worker

    Get PDF
    The construction industry is one of the most unsafe industries for workers in the United States. Advancements in wearable technology have been proven to create a safer construction environment. Despite the availability of these devices, use within the construction industry remains low. The objective of this research is to identify and analyze the causes behind the reluctance of the construction industry to implement two specific wearable safety devices, a biometric sensor, and a location tracking system. Device acceptance was analyzed from the perspective of the user (construction field labor) and company decision makers (construction managers). A modified unified theory of acceptance and use of technology (UTAUT) model was developed specific to barriers commonly found within technology adoption in the construction industry including: perceived performance expectancy, perceived effort expectancy, openness to data utilization, social influence, data security, and facilitating conditions. A structured questionnaire was designed to test for association between the mentioned constructs and either behavioral intention or actual use. The questionnaire went through an expert review process, and a pilot study was conducted prior to being distributed to industry. Once all data was received Pearson chi-squared analysis was used to test for association between the constructs. A minority (46%) of labor respondents would not agree to voluntarily use the biometric wearable sensing device. Constructs associated with this finding included perceived performance expectancy, perceived effort expectancy, and social influence. A majority (59%) of labor respondents would not agree to voluntarily use the location tracking wearable sensing device. Constructs associated with this finding included perceived performance expectancy, social influence, and data security. A majority (56%) of management respondents would not implement the biometric wearable sensing device. Constructs found to be associated with this finding included perceived performance expectancy, openness to data utilization, and social influence of the client. A supermajority (68%) of management respondents would not implement the location tracking wearable sensing device. Constructs found to be associated with this finding include perceived performance expectancy, perceived effort expectancy, openness to data utilization, social influence, and data security. This study will aid in the successful implementation of wearable sensing devices within the construction industry. Findings from this study can be used to aid those hoping to implement wearable sensing devices by identifying causes of wearable sensing device rejection. The results of this study can be used by both project managers and health and safety professionals to aid in device acceptance by field labor, and by those whose goal is to increase device use among construction firms

    How to Host a Data Competition: Statistical Advice for Design and Analysis of a Data Competition

    Full text link
    Data competitions rely on real-time leaderboards to rank competitor entries and stimulate algorithm improvement. While such competitions have become quite popular and prevalent, particularly in supervised learning formats, their implementations by the host are highly variable. Without careful planning, a supervised learning competition is vulnerable to overfitting, where the winning solutions are so closely tuned to the particular set of provided data that they cannot generalize to the underlying problem of interest to the host. This paper outlines some important considerations for strategically designing relevant and informative data sets to maximize the learning outcome from hosting a competition based on our experience. It also describes a post-competition analysis that enables robust and efficient assessment of the strengths and weaknesses of solutions from different competitors, as well as greater understanding of the regions of the input space that are well-solved. The post-competition analysis, which complements the leaderboard, uses exploratory data analysis and generalized linear models (GLMs). The GLMs not only expand the range of results we can explore, they also provide more detailed analysis of individual sub-questions including similarities and differences between algorithms across different types of scenarios, universally easy or hard regions of the input space, and different learning objectives. When coupled with a strategically planned data generation approach, the methods provide richer and more informative summaries to enhance the interpretation of results beyond just the rankings on the leaderboard. The methods are illustrated with a recently completed competition to evaluate algorithms capable of detecting, identifying, and locating radioactive materials in an urban environment.Comment: 36 page

    Alternative Sample Loading Preparation for Thermal Ionization Mass Spectrometry

    Get PDF
    This contribution describes a new sample loading method for Thermal Ionization Mass Spectrometry (TIMS), which is used in nuclear safeguards and non-proliferation efforts worldwide and is known as the “gold standard” in isotopic ratio measurements of plutonium. TIMS analysis is used to determine grades of nuclear material and the extent of enrichment at production sites. The current sample loading method for TIMS analysis is known as “bead-loading”. While it provides the lowest detection limit of any known method for plutonium analysis, bead-loading is a difficult, time consuming, and expensive method that results in up to 20% sample loss. The major encumbrance of the method is the need to manually place a small polymer bead (~40 ÎŒm diameter) containing the plutonium sample onto a narrow and fragile ionization filament. We have developed an alternative sample loading method that eliminates the difficult and time-consuming steps by pre-coating the ionization filaments with a thin polymer film. Sample loading times have been reduced from hours to minutes. The films remain stably anchored to the filament, thus preventing sample loss. Ongoing TIMS measurements are testing our hypothesis that the method will increase overall measurement efficiency/sensitivity by isolating the sample in close proximity to the filament

    Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm

    Full text link
    Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the Sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of the performance of the Weighted Center of Gravity algorithm for centroiding with elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture.Comment: 10 pages, 14 figure

    Sugar Beet Root Storage Properties Are Unaffected by Cercospora Leaf Spot

    Get PDF
    © 2023 The American Phytopathological Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1094/PDIS-09-22-2156-RECercospora leaf spot (CLS; causal agent Cercospora beticola Sacc.) is endemic in many sugar beet production regions due to the widespread distribution of C. beticola and the inability of current management practices to provide complete control of the disease. Roots harvested from plants with CLS, therefore, are inevitably incorporated into sugar beet root storage piles, even though the effects of CLS on root storage properties are largely unknown. Research was conducted to determine the effects of CLS on storage properties including root respiration rate, sucrose loss, invert sugar accumulation, loss in recoverable sucrose yield, and changes in sucrose loss to molasses with respect to CLS disease severity and storage duration. Roots were obtained from plants with four levels of CLS severity in each of three production years, stored at 5°C and 95% relative humidity for up to 120 days, and evaluated for storage characteristics after 30, 90 and 120 days storage. No significant or repeatable effects of CLS on root respiration rate, sucrose loss, invert sugar accumulation, loss in recoverable sucrose yield, or change in sucrose loss to molasses were detected after 30, 90 or 120 days storage regardless of the severity of CLS disease symptoms. Therefore, no evidence was found that CLS accelerates sugar beet storage losses, and it is concluded that roots harvested from plants with CLS can be stored without additional or specialized precaution, regardless of CLS symptom severity.Peer reviewe

    Modeling of pulsed laser guide stars for the Thirty Meter Telescope project

    Get PDF
    The Thirty Meter Telescope (TMT) has been designed to include an adaptive optics system and associated laser guide star (LGS) facility to correct for the image distortion due to Earth's atmospheric turbulence and achieve diffraction-limited imaging. We have calculated the response of mesospheric sodium atoms to a pulsed laser that has been proposed for use in the LGS facility, including modeling of the atomic physics, the light-atom interactions, and the effect of the geomagnetic field and atomic collisions. This particular pulsed laser format is shown to provide comparable photon return to a continuous-wave (cw) laser of the same average power; both the cw and pulsed lasers have the potential to satisfy the TMT design requirements for photon return flux.Comment: 16 pages, 20 figure

    Ariel - Volume 11 Number 1

    Get PDF
    Executive Editors Ellen Feldman Leonardo S. Nasca, Jr. Business Managers Barbara L. Davies Martin B. Getzow News Editor Aaron D. Bleznak Features Editor Dave Van Wagoner CAHS Editor Joan M. Greco Editorial Page Editor Samuel Markind Photography Editor Leonardo S. Nasca, Jr. Sports Editor Paul F. Mansfiel

    Is it dangerous? The role of an emotional visual search strategy and threat‐relevant training in the detection of guns and knives

    Get PDF
    Counter‐terrorism strategies rely on the assumption that it is possible to increase threat detection by providing explicit verbal instructions to orient people's attention to dangerous objects and hostile behaviours in their environment. Nevertheless, whether verbal cues can be used to enhance threat detection performance under laboratory conditions is currently unclear. In Experiment 1, student participants were required to detect a picture of a dangerous or neutral object embedded within a visual search display on the basis of an emotional strategy ‘is it dangerous?’ or a semantic strategy ‘is it an object?’. The results showed a threat superiority effect that was enhanced by the emotional visual search strategy. In Experiment 2, whilst trainee police officers displayed a greater threat superiority effect than student controls, both groups benefitted from performing the task under the emotional than semantic visual search strategy. Manipulating situational threat levels (high vs. low) in the experimental instructions had no effect on visual search performance. The current findings provide new support for the language‐as‐context hypothesis. They are also consistent with a dual‐processing account of threat detection involving a verbally mediated route in working memory and the deployment of a visual template developed as a function of training

    Supervisory Control System Architecture for Advanced Small Modular Reactors

    Full text link
    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations
    • 

    corecore