8,041 research outputs found

    Patna: A Medical Mission

    Get PDF

    Free-space coherent optical communication receivers implemented with photorefractive optical beam combiners

    Get PDF
    Performance measurements are reported concerning a coherent optical communication receiver that contained an iron doped indium phosphide photorefractive beam combiner, rather than a conventional optical beam splitter. The system obtained a bit error probability of 10(exp -6) at received signal powers corresponding to less than 100 detected photons per bit. The system used phase modulated Nd:YAG laser light at a wavelength of 1.06 microns

    Reduced electrical bandwidth receivers for direct detection 4-ary PPM optical communication intersatellite links

    Get PDF
    This interim progress report consists of copies of three reports written for NASA's Flight System Development and Demonstration (FSDD) project on optical intersatellite links. The first report, 'Test results of the PlessCor avalanche photodiode (APD) preamplifier for use in the 50 Mbps quaternary pulse position modulator (QPPM) receiver,' was prepared for NASA Goddard Space Flight Center. The second, 'Performance of Q-ary PPM receiver under additive white Gaussian noise,' was prepared at the request of NASA Lewis Research Center for testing the electronic systems for the FSDD project. The third, 'Use of a Bessel lowpass filter as an approximate raised cosine filter,' was written for raised cosine filter implementation in the FSDD QPPM receiver

    Performance measurement results for a 220 Mbps QPPM optical communication receiver with an EG/G Slik APD

    Get PDF
    The performance of a 220 Mbps quaternary pulse position modulation (QPPM) optical communication receiver with a 'Slik' silicon avalanche photodiode (APD) and a wideband transimpedance preamplifier in a small hybrid circuit module was measured. The receiver performance had been poor due to the lack of a wideband and low noise transimpedance preamplifier. With the new APB preamplifier module, the receiver achieved a bit error rate (BER) of 10 exp -6 at an average received input optical signal power of 4.2 nW, which corresponds to an average of 80 received (incident) signal photons per information bit

    Lagrangian Cobordisms via Generating Families: Constructions and Geography

    Full text link
    Embedded Lagrangian cobordisms between Legendrian submanifolds are produced from isotopy, spinning, and handle attachment constructions that employ the technique of generating families. Moreover, any Legendrian with a generating family has an immersed Lagrangian filling with a compatible generating family. These constructions are applied in several directions, in particular to a non-classical geography question: any graded group satisfying a duality condition can be realized as the generating family homology of a connected Legendrian submanifold in R^{2n+1} or in the 1-jet space of any compact n-manifold with n at least 2.Comment: 34 pages, 11 figures. v2: corrected a referenc

    Receiver performance of laser ranging measurements between the Lunar Observer and a subsatellite for lunar gravity studies

    Get PDF
    The optimal receiver for a direct detection laser ranging system for slow Doppler frequency shift measurement is shown to consist of a phase tracking loop which can be implemented approximately as a phase lock loop with a 2nd or 3rd order loop filter. The laser transmitter consists of an AlGaAs laser diode at a wavelength of about 800 nm and is intensity modulated by a sinewave. The receiver performance is shown to be limited mainly by the preamplifier thermal noise when a silicon avalanche photodiode is used. A high speed microchannel plate photomultiplier tube is shown to outperform a silicon APD despite its relatively low quantum efficiency at wavelengths near 800 nm. The maximum range between the Lunar Observer and the subsatellite for lunar gravity studies is shown to be about 620 km when using a state-of-the-art silicon APD and about 1000 km when using a microchannel plate photomultiplier tube in order to achieve a relative velocity measurement accuracy of 1 millimeter per second. Other parameters such as the receiver time base jitter and drift also limit performance and have to be considered in the design of an actual system

    Highly Frustrated Magnetic Clusters: The kagome on a sphere

    Get PDF
    We present a detailed study of the low-energy excitations of two existing finite-size realizations of the planar kagome Heisenberg antiferromagnet on the sphere, the cuboctahedron and the icosidodecahedron. After highlighting a number of special spectral features (such as the presence of low-lying singlets below the first triplet and the existence of localized magnons) we focus on two major issues. The first concerns the nature of the excitations above the plateau phase at 1/3 of the saturation magnetization Ms. Our exact diagonalizations for the s=1/2 icosidodecahedron reveal that the low-lying plateau states are adiabatically connected to the degenerate collinear ``up-up-down'' ground states of the Ising point, at the same time being well isolated from higher excitations. A complementary physical picture emerges from the derivation of an effective quantum dimer model which reveals the central role of the topology and the intrinsic spin s. We also give a prediction for the low energy excitations and thermodynamic properties of the spin s=5/2 icosidodecahedron Mo72Fe30. In the second part we focus on the low-energy spectra of the s>1/2 Heisenberg model in view of interpreting the broad inelastic neutron scattering response reported for Mo72Fe30. To this end we demonstrate the simultaneous presence of several broadened low-energy ``towers of states'' or ``rotational bands'' which arise from the large discrete spatial degeneracy of the classical ground states, a generic feature of highly frustrated clusters. This semiclassical interpretation is further corroborated by their striking symmetry pattern which is shown, by an independent group theoretical analysis, to be a characteristic fingerprint of the classical coplanar ground states.Comment: 22 pages Added references Corrected typo

    Avalanche photodiode photon counting receivers for space-borne lidars

    Get PDF
    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components

    Direct detection optical intersatellite link at 220 Mbps using AlGaAs laser diode and silicon APD with 4-ary PPM signaling

    Get PDF
    A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response
    • …
    corecore