349 research outputs found

    Relaxation behaviour at the spin-flop phase transition in the quasi-1D antiferromagnet CsMnCl3·2H2O

    Get PDF
    The low-frequency relaxation behaviour of the linear-chain antiferromagnet CsMnCl3·2H2O at the spin-flop transition has been determined from dynamic susceptibility measurements on a single crystal placed in direct contact with liquid helium. The experiments were performed between 1.4 and 4.2 K in the frequency range 0.1 Hz–3.0 kHz with a frequency-sweeping SQUID susceptometer. Below Tλ = 2.17 K, the relaxation rate τ−1 manifests an exponential temperature dependence, τ−1 = ω0e−E/kT, where E/k = 3.19±0.04 K is approximately equal to the magnitude of the intrachain exchange interaction constant Ja/k. Above Tλ the apparent deviation from the exponential behaviour has been explained satisfactorily by using the thermal conduction model of relaxation. The field-dependent factor ω0 is directly proportional to the ratio of the adiabatic χs to the isothermal χT susceptibilities

    Design of a Fast Digital Double Relaxation Oscillation SQUID

    Get PDF
    A fast digital Double Relaxation Oscillation SQUID (DROS) with a relaxation oscillation frequency of 100 MHz has been developed. The digital DROS incorporates a DROS and a superconducting up-down counter that supplies the feedback flux. The major advantage of a DROS is that the relaxation oscillations generate an on-chip clock signal and therefore, no external clock is required. In order to maximize the slew rate without compromising the sensitivity, the quantization unit of the feedback flux was adapted to the flux noise of the DROS. This resulted in a designed flux slew rate of 5·106 ¿0/s. We will discuss the design optimization, numerical simulations, the layout and some experimental results of the digital DRO

    Moa and the multi-model architecture: a new perspective on XNF2

    Get PDF
    Advanced non-traditional application domains such as geographic information systems and digital library systems demand advanced data management support. In an effort to cope with this demand, we present the concept of a novel multi-model DBMS architecture which provides evaluation of queries on complexly structured data without sacrificing efficiency. A vital role in this architecture is played by the Moa language featuring a nested relational data model based on XNF2, in which we placed renewed interest. Furthermore, extensibility in Moa avoids optimization obstacles due to black-box treatment of ADTs. The combination of a mapping of queries on complexly structured data to an efficient physical algebra expression via a nested relational algebra, extensibility open to optimization, and the consequently better integration of domain-specific algorithms, makes that the Moa system can efficiently and effectively handle complex queries from non-traditional application domains

    Multilayer studies and applications in template bi-epitaxial DC SQUIDS

    Get PDF
    Multilayer deposition for the creation of a well-defined grain boundary, based on different in-plane orientations of c-axis oriented thin YBa2O2Cu3O7-δ layers on a single substrate, has been performed on three different kinds of substrates: (1102)-oriented Al2O3 , (100) SrTiO3, and (100) MgO. The multilayers consist of combinations of SrTiO3, MgO, CeO2, and YBa2O2Cu3O7-δ. The YBa 2O2Cu3O7-δ top layers on (1102) Al2O3 and (100) SrTiO3 were polycrystalline. Josephson junctions and DC superconducting quantum interference devices (SQUIDs) have been structured in the layers on MgO. Shapiro steps were observed. The Jcρn-product of the junctions at 4.2 K is on the order of 1 mV. The critical current decreases in good approximation linearly with increasing temperature, whereas the normal state resistance is nearly temperature independent. Voltage modulation was observed at temperatures up to 77 K

    Critical voltage of a mesoscopic superconductor

    Get PDF
    We study the role of the quasiparticle distribution function f on the properties of a superconducting nanowire. We employ a numerical calculation based upon the Usadel equation. Going beyond linear response, we find a non-thermal distribution for f caused by an applied bias voltage. We demonstrate that the even part of f (the energy mode f_L) drives a first order transition from the superconducting state to the normal state irrespective of the current

    Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K

    Get PDF
    We present the performances and the strain sensitivity of the first spherical gravitational wave detector equipped with a capacitive transducer and read out by a low noise two-stage SQUID amplifier and operated at a temperature of 5 K. We characterized the detector performance in terms of thermal and electrical noise in the system output sygnal. We measured a peak strain sensitivity of 1.51020Hz1/21.5\cdot 10^{-20} Hz^{-1/2} at 2942.9 Hz. A strain sensitivity of better than 51020Hz1/25\cdot 10{-20}Hz{-1/2} has been obtained over a bandwidth of 30 Hz. We expect an improvement of more than one order of magnitude when the detector will operate at 50 mK. Our results represent the first step towards the development of an ultracryogenic omnidirectional detector sensitive to gravitational radiation in the 3kHz range.Comment: 8 pages, 5 figures, submitted to Physical Review

    Slotted high Tc dc SQUID magnetomeeters

    Get PDF
    Recently, it was observed that the low frequency noise of slotted SQUIDs is not affected when cooling them down in magnetic fields up to 0.05 mT. This behavior is ascribed to the fact that magnetic vortices are expelled out of the narrow strips into the slots. Thus 1/f noise by hopping of vortices in the superconducting structure is eliminated. Here we present a systematic investigation on a series of slotted high-Tc dc SQUIDs. The number of slots varies from zero to eight. A model is developed that provides values for the effective area and inductance of the slotted washers and the current distribution within the slotted SQUIDs. The model can explain the experimentally observed maximum in the effective area for four slots very well. The observed agreement with respect to the modulation depth supports the theoretical values for the inductance. The white noise of the slotted SQUIDs is higher than expected, while the expected rise of low frequency noise for field cooled solid washer SQUIDs was not observe

    A 19-channel d.c. SQUID magnetometer system for brain research

    Get PDF
    A 19-channel d.c. SQUID magnetometer system for neuromagnetic investigations is under constuction. The first-order gradiometers for sensing the signal are placed in a hexagonal configuration. D.c. SQUIDs based on niobium/aluminium technology have been developed, leading to a field sensitivity of about 5 fT/ Hz. SQUID read-out is realized with a resonant transformer circuit at 100 kHz. The multichannel control and detection electronics are compactly built

    Coded SQUID arrays

    Get PDF
    We report on a superconducting quantum interference device (SQUID) system to read out large arrays of cryogenic detectors. In order to reduce the number of SQUIDs required for an array of these detectors, we used code-division multiplexing. This simplifies the electronics because of a significantly reduced number of wires from the cryogenic detectors to the SQUIDs and the room temperature electronics. Several prototype chips based on SQUIDs with multiple inputs coils have been developed and direct and indirect crosstalk properties are discussed
    corecore