
PRL 96, 147002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 APRIL 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications
Critical Voltage of a Mesoscopic Superconductor

R. S. Keizer,1 M. G. Flokstra,2 J. Aarts,2 and T. M. Klapwijk1

1Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2Kamerlingh Onnes Laboratory, Universiteit Leiden, 2300 RA Leiden, The Netherlands

(Received 23 February 2005; published 12 April 2006)
0031-9007=
We study the influence of a voltage-driven nonequilibrium of quasiparticles on the properties of short
mesoscopic superconducting wires. We employ a numerical calculation based upon the Usadel equation.
Going beyond linear response, we find a nonthermal energy distribution of the quasiparticles caused by the
applied bias voltage. It is demonstrated that this nonequilibrium drives the system from the super-
conducting state to the normal state, at a current density far below the critical depairing current density.
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FIG. 1. Quasiparticle distribution function f�x; "� as a function
of energy " and position x for a normal wire (a) and a super-
conducting wire (b) between normal metallic reservoirs for
kBT � eV <�0, with (c) and (d) the decomposition of (b)
into the charge mode fT and energy mode fL.
The energy distribution function of quasiparticles in a
normal metal is under equilibrium conditions given by the
Fermi-Dirac distribution f0. In recent years it has been
demonstrated that in a voltage (V)-biased mesoscopic wire
(length L) a two-step nonequilibrium distribution develops
[1] with additional rounding by quasiparticle scattering due
to spin-flip and/or Coulomb interactions [2]. Figure 1(a)
shows the distribution, which resembles two shifted Fermi-
Dirac functions:

f�x; "� � �1� x�f0�"� eV=2� � xf0�"� eV=2� (1)

with " the quasiparticle energy and x the coordinate along
the wire. For strong enough relaxation (L� L�, with L�
the phase coherence length) and/or high temperatures
(kBT � eV) the distribution returns to a Fermi-Dirac dis-
tribution with a local effective temperature.

The questions we address here are how the distribution
function is modified when the normal wire is replaced by a
superconducting wire [for a typical result see Fig. 1(b)] and
how this affects observable properties such as the current-
voltage characteristics of the system and the breakdown of
the superconducting state. The static nonequilibrium dis-
tribution leads to the occurrence of a resistance of the
superconductor. Another source of voltage might poten-
tially develop due to phase-slip events, either thermally
activated or as quantum phase slips [3,4]. The problem that
we study focuses on wires which are wide enough to ignore
the contribution of quantum phase slips—but still more
narrow than the superconducting phase coherence length
�0—to the resistance and are also far enough below the
critical temperature Tc to ignore the thermally assisted
contribution. Within these constraints we relate the distri-
bution function to observable quantities. To do this, it is
convenient to separate the part of f which is symmetric in
particle-hole space, fL (energy mode), from the asymmet-
ric part, fT (charge mode), since they each have a different
spatial and spectral form [Figs. 1(c) and 1(d)]. In particular,
we will show that the breakdown is characterized by a
voltage rather than by a current; in other words, the system
cannot be trivially treated as two resistors modelling the
normal current to supercurrent conversion, with a super-
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conducting element characterized by its depairing current
in between.

The transport and spectral properties of dirty super-
conducting systems (‘e � �0, with ‘e the elastic mean
free path) are described by the quasiclassical Green func-
tions obeying the Usadel equation [5]. For out of equilib-
rium systems we use the Keldysh technique in Nambu
(particle-hole) space, neglecting spin-dependent inter-
actions. We ignore inelastic scattering in the wire and
use the time-independent formalism. The Usadel equa-
tion (for an s-wave superconductor) then takes the form
@Dr� �Gr �G� � �i� �H; �G	, where the check notation ( �G)
denotes a 4
 4 matrix, D is the diffusion constant and r
is the spatial derivative [6]. The elements of �G and �H, when
split up in Keldysh space, are 2
 2 matrices in Nambu
space, denoted by a hat:

�G � ĜR ĜK

0 ĜA

 !
; �H � Ĥ 0

0 Ĥ

 !
(2)
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Here, ĜR and ĜA are the retarded and advanced compo-
nents describing equilibrium properties and ĜK is the
Keldysh component which describes the nonequilibrium
properties. Their elements are the quasiclassical (energy-
dependent) normal and anomalous Green functions and,
for the Keldysh component only, the quasiparticle distri-
bution functions (which take account of the nonequilib-
rium). For the Hamiltonian Ĥ we write

Ĥ �
" ��

�� �"

� �
(3)

where " is the (eigen)energy and the chosen gauge is such
that the pair potential � is in equilibrium a real quantity,
� � ��. The matrix Green function �G satisfies the nor-
malization condition �G �G � �1, leading to ĜRĜR �

ĜAĜA � 1̂ and ĜRĜK � ĜKĜA � 0̂. If superconducting
reservoirs in the system are kept at zero voltage (avoiding
ac Josephson effects), ĜK can be written as ĜK � ĜRf̂�
f̂ĜA. Here f̂ is the diagonal generalized distribution num-
ber matrix of the quasiparticles in Nambu space. To relate
f̂ to observable quantities we decompose it into an even
part (or energy or longitudinal mode) and an odd part (or
charge or transverse mode) in particle-hole space: f̂ �
fL�0 � fT�3, where �i are the Pauli matrices in particle-
hole space [7]. The full distribution function is retained by
2f�x; "� � 1� fL�x; "� � fT�x; "�.

The retarded matrix Green function in terms of the
position and energy-dependent normal g�"; x� and anoma-
lous Fi�"; x� Green functions is

Ĝ R �
g�"; x� F1�"; x�
F2�"; x� �g�"; x�

� �
: (4)

Substituting this in the retarded part of the Usadel equa-
tion: @Dr�ĜRrĜR� � �i�Ĥ; ĜR	 and using the normal-
ization condition (g2 � F1F2 � 1), we find the retarded
Usadel equations:

@D�gr2F1 � F1r
2g	 � �2i�g� 2i"F1;

@D�F1r
2F2 � F2r

2F1	 � 2i�F2 � 2i��F1:
(5)

The second equation is essential when calculating the
nonequilibrium properties of superconductors. Its left-
hand side is proportional to the divergence of the spectral
(energy-dependent) supercurrent, which is (compared to
the equilibrium case) no longer a conserved quantity. A
general relation between the advanced matrix Green func-
tion and the retarded matrix Green function is given by
ĜR � ��3�Ĝ

A�y�3. Using this, the Keldysh matrix Green
function ĜK can be written entirely in terms of g, F1, F2,
fL, and fT:

Ĝ K �
�g� gy�f� F1f� � F

y
2 f�

F2f� � F
y
1 f� ��g� gy�f�

 !
(6)

where f� � fL � fT . Working out the kinetic part of the
Usadel equation @Dr�ĜRrĜK � ĜKrĜA� � �i�Ĥ; ĜK	
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we find (combining the diagonal components) the kinetic
equations describing the nonequilibrium part:

@Drjenergy�0; @Drjcharge�2RLfL�2RTfT: (7)

The various elements in Eq. (7) are given by

jenergy � �LrfL ��XrfT � j"fT;

jcharge � �TrfT ��XrfL � j"fL;

�L �
1

4
�2� 2jgj2 � jF1j

2 � jF2j
2�;

�T �
1

4
�2� 2jgj2 � jF1j

2 � jF2j
2�;

�X �
1

4
�jF1j

2 � jF2j
2�;

j" �
1

2
<fF1rF2 � F2rF1g;

RL � �
1

2
=f�F2 � �Fy1 g;

RT � �
1

2
=f�F2 � �Fy1 g:

(8)

Equations (7) are two coupled diffusion equations for fL
and fT , describing the divergences in the spectral energy
current and the spectral charge current. The total charge
current is given by J � 1

2e�

R
jcharged" with � the resistiv-

ity. The terms �L and �T can be related to an effective
diffusion constant for the energy and charge mode, respec-
tively, and �X as a ‘‘cross-diffusion’’ between them. j" is
the spectral supercurrent and RL and RT describe the
‘‘leakage’’ of spectral current to different energies, where
the total leakage current /

R
�RLfL � RTfT	d" is zero. In

the small signal limit the terms �X, j", and RL are small
and can in many cases be neglected (linear approach),
effectively decoupling fL and fT . In this article we go
beyond this limit.

The Usadel equation is supplemented by a self-
consistency relation:

Ĥ �1;2� �
N0Veff

4

Z @!D

�@!D

ĜK
�1;2�d": (9)

Here, N0 is the normal density of states around the Fermi
energy, Veff the effective attractive interaction, and the
integral limits are set by the Debye energy @!D. The
resulting equation for � becomes � � � 1

4N0Veff 
R
@!D
�@!D

��F1 � F
y
2 �fL � �F1 � F

y
2 �fT	d".

To calculate spectral and transport properties, one needs
to know the self-consistent solution of �. In most practical
cases, this has to be done numerically. A convenient solu-
tion scheme is to first find the Green functions of the
system by solving the retarded equations for a certain �,
next to determine the quasiparticle distribution functions
by solving the kinetic equations, and then calculate a new
� using the self-consistency relation. This process has to
be repeated until � converges. As a starting value for � we
2-2
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use the BCS form at zero temperature. A typical solution
employs a grid of (on the order of) 104 energies, 102 spatial
coordinates, and 103 iterations of �. The stability of the
solution scheme was tested extensively by inserting differ-
ent initial values. At all the applied voltages self-consistent
steady state solutions are found. To simplify the calcula-
tions a parametrization is used that automatically fulfills
the normalization condition. It is convenient to take g �
cosh���, F1� sinh���ei�, and F2��sinh���e�i�, where �
and � are position- and energy-dependent (complex) var-
iables. At the interfaces between the superconducting wire
and the normal metallic reservoirs we use the following
boundary conditions: � � r� � 0 (retarded equation) and
fL;T�

1
2�tanh"�eV2kBT

� tanh"�eV2kBT
� (kinetic equation), where

the latter are the usual reservoir distribution functions.
The transport properties of the NSN system (see inset

Fig. 2) can now be calculated with the equations described
above. In a previous analysis a finite differential conduc-
tance was found at zero bias employing a linear response
calculation [8]. With the approach introduced here, the full
current-voltage relation can be obtained. The result at
several temperatures is displayed in Fig. 2, with the voltage
normalized to �0�� �bulk;T�0� and the current density
normalized to the critical current density Jc 
 0:75 �0

�0�e

[9], with �0 �
���������������
@D=�0

p
. At T � 0 we observe a linear

resistance at low voltages caused by the decay of fT
[Fig. 1(c)], and a critical point (voltage) above which the
resistance is equal to the normal state resistance. At higher
temperatures (T � 0:5; 0:75Tc) a linear approach would
only give an adequate approximation in a limited voltage
range. We will argue below that the superconductor
switches to the normal state by fL which is controlled by
the voltage and cannot be interpreted as a critical current.

In Fig. 3 the electrostatic potential � �
R
1
0 fT<fggd�

along the wire is shown at zero temperature prior to
(eV=�0 � 0:013; 0:646) and immediately after (eV=�0 �
0:651) the transition. The potential can be seen to drop to
T = 0 (17ξ0)
T = 0.75 TC

T = 0.5 TC

T = 0

N reservoir N reservoir
+V -VS wire

NSN structure, L = 8.5 ξ0

eV / ∆0

J / JC

N stateS state

1.00.750.50.250.0

1.0

0.8
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FIG. 2 (color online). The calculated current (J)-voltage (V)
relation of a superconducting wire of length L � 8:5�0 between
normal metallic reservoirs (see inset) at several temperatures,
and for a wire of length 17�0 at T � 0. Jc is the critical current
density, and �0 the bulk gap energy.
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zero over a distance on the order of the coherence length
due to the normal current to supercurrent conversion. This
mechanism also gives rise to the finite zero bias resistance.
The profile hardly changes over the full range of voltages,
until the critical value is reached, after which the electro-
static potential drops in a linear fashion, indicating the
system is in the normal state. The minimal changes em-
phasize the limited influence of fT on the superconducting
state (i.e., on �).

The current density at which the superconductor
switches to the normal state (for T � 0) is much smaller
than the critical current density in an infinitely long wire
(J=Jc � 1). This excludes the depairing mechanism as the
(main) cause of the transition. Neither is the transition
triggered at the weaker superconducting edges as indicated
by the shape of the electrostatic potential profile in Fig. 3.

The parameter that determines whether or not the super-
conducting state exist is �, as follows from Eq. (9). The
integral in this self-consistency equation sums all pair
states (either occupied by a Cooper pair or empty). Fi gives
the Cooper pair density of states and fL and fT determine
which of those states are doubly occupied or doubly empty
and which are singly occupied (broken) due to the presence
of quasiparticles. In equilibrium at T � 0, a switch to the
normal state can only be caused by reaching a critical
phase gradient, entering � via Fi. In the presence of
quasiparticles, � (and thus potentially the state of the
system) is also influenced by the distribution functions. It
was noticed above that the charge mode fT has a very
limited influence on �. The effect of the energy mode fL is
examined below.

By a small modification of our system to a T-shaped
geometry as shown in Fig. 4, we can in a direct way
disentangle the effects of fL and fT on �. This setup can
be thought of as the connection of the superconducting
wire to the center of a normal wire. In the middle of such a
wire fT is equal to zero, but fL is not. The result for the pair
potential at the edge of the superconducting wire as a
function of the voltage of the reservoirs is shown in
Fig. 4. Although there is no net current flowing through
the superconductor, at a certain voltage the pair potential
collapses. The voltage that is necessary to trigger this
φ 
/ V

x / ξ0

eV/∆0 = 0.651 (N state)
eV/∆0 = 0.646 (S state)
eV/∆0 = 0.013 (S state)
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FIG. 3 (color online). The normalized electrostatic potential �
as a function of position x along the superconducting wire for
bias voltages prior to and immediately after the transition (at
T � 0).
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FIG. 4 (color online). Top: T-shaped geometry. Bottom: pair
potential � in an S wire (of length L � 4:25�0). For two
different positions along the wire (left) and as a function of
position for two different voltages (right). The breakdown volt-
age is at eV=�0 � 0:707.
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transition to the normal state is very close to the transition
in Fig. 2 (where we used the two terminal setup).
Apparently the influence of fL is important, since it can
cause the superconductor to switch to the normal state
irrespective of the value of the supercurrent. Clearly the
influence of fL on the state of the superconductor is larger
than the influence of the supercurrent on this same
quantity.

Upon approaching the critical voltage, Eq. (9) has mul-
tiple solutions and selecting the stable solution is a com-
plicated issue of nonequilibrium thermodynamics [10,11].
For a uniform gap in the case of Fig. 4 (here called bulk) we
find analytically from Eq. (9) that � � �0 for eV< 1

2 �0,
and � � 0 for eV> �0. At intermediate voltages, both
solutions exist together with a third solution at � ����������������������������

2eV�0 ��2
0

q
. In order to investigate the stability of these

solutions we use the approach taken by Bardeen [12] to
define the energy difference between the normal and the
superconducting state based on comparing potential and
kinetic energies of the electron systems and apply it lo-
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FIG. 5 (color online). Energy difference between the super-
conducting and normal state. Right: analytical bulk solution
showing the bistable voltage range. Left: numerical solutions
for (top) increasing wire length as function of voltage and
(bottom) as function of position. Energies are normalized to
H2
c�0�=8�.
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cally. We realize that the validity of this approach remains
to be justified. However, using it we find that the numeri-
cally calculated energy difference (Fig. 5) for the T-shaped
structure gives the same results as the analytical ones for
the bulk superconductor. For long wires, the numerical
results approach the analytical calculation. This analysis
suggests that the bias voltage drives the system towards a
first order phase transition [13].

In conclusion, we have studied the role of the energy
mode fL of the quasiparticle distribution on the properties
of a superconducting nanowire. We find a nonthermal
distribution for fL (caused by an applied bias voltage)
which drives the system from the superconducting state
to the normal state irrespective of the current. In general,
the significant role played by fL found in these super-
conducting nanowires stresses the importance of treating
fL and fT on equal footing [14].
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