1,888 research outputs found

    A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag

    No full text
    Extensions of the basic micromagnetic model that include effects such as spin-current interaction, diffusion of thermal energy or anisotropic magnetoresistance are often studied by performing simulations that use case-specific ad-hoc extensions of widely used software packages such as OOMMF or Magpar. We present the novel software framework 'Nmag' that handles specifications of micromagnetic systems at a sufficiently abstract level to enable users with little programming experience to automatically translate a description of a large class of dynamical multifield equations plus a description of the system's geometry into a working simulation. Conceptually, this is a step towards a higher-level abstract notation for classical multifield mutliphysics simulations, similar to the change from assembly language to a higher level human-and-machine-readable formula notation for mathematical terms (FORTRAN) half a century ago. We demonstrate the capability of this approach through two examples, showing 1) a reduced dimensionality model coupling two copies of the micromagnetic sector and 2) the computation of a spatial current density distribution for anisotropic magnetoresistance (AMR). For cross-wise validation purposes, we also show how Nmag compares to the OOMMF and Magpar packages on a selected micromagnetic toy system. We furthermore, briefly discuss the limiations of our framework and related conceptual questions

    Crossing the Point of No Return: A Public Goods Experiment

    Get PDF
    Participants in a public goods experiment receive private or common signals regarding the so-called "point of no return", meaning that if the group's total contribution falls below this point, all payoffs are reduced. An individual faces the usual conflict between private and collective interests above the point of no return, while he incurs the risk of damaging everyone by not surpassing the point. Our data reveal that contributions are higher if the cost of not reaching the threshold is high. In particular if the signal is private, many subjects are not willing to provide the necessary contribution.Public goods, provision point mechanism, experiments, reduction factor, signal

    The vulnerability of public spaces: challenges for UK hospitals under the 'new' terrorist threat

    Get PDF
    This article considers the challenges for hospitals in the United Kingdom that arise from the threats of mass-casualty terrorism. Whilst much has been written about the role of health care as a rescuer in terrorist attacks and other mass-casualty crises, little has been written about health care as a victim within a mass-emergency setting. Yet, health care is a key component of any nation's contingency planning and an erosion of its capabilities would have a significant impact on the generation of a wider crisis following a mass-casualty event. This article seeks to highlight the nature of the challenges facing elements of UK health care, with a focus on hospitals both as essential contingency responders under the United Kingdom's civil contingencies legislation and as potential victims of terrorism. It seeks to explore the potential gaps that exist between the task demands facing hospitals and the vulnerabilities that exist within them

    Public goods and decay in networks

    Get PDF
    We propose a simple behavioral model to analyze situations where (1) a group of agents repeatedly plays a public goods game within a network structure and (2) each agent only observes the past behavior of her neighbors, but is affected by the decisions of the whole group. The model assumes that agents are imperfect conditional cooperators, that they infer unobserved contributions assuming imperfect conditional cooperation by others, and that they have some degree of bounded rationality. We show that our model approximates quite accurately regularities derived from public goods game experiments

    Vacua of N=10 three dimensional gauged supergravity

    Full text link
    We study scalar potentials and the corresponding vacua of N=10 three dimensional gauged supergravity. The theory contains 32 scalar fields parametrizing the exceptional coset space E6(14)SO(10)×U(1)\frac{E_{6(-14)}}{SO(10)\times U(1)}. The admissible gauge groups considered in this work involve both compact and non-compact gauge groups which are maximal subgroups of SO(10)×U(1)SO(10)\times U(1) and E6(14)E_{6(-14)}, respectively. These gauge groups are given by SO(p)×SO(10p)×U(1)SO(p)\times SO(10-p)\times U(1) for p=6,...10p=6,...10, SO(5)×SO(5)SO(5)\times SO(5), SU(4,2)×SU(2)SU(4,2)\times SU(2), G2(14)×SU(2,1)G_{2(-14)}\times SU(2,1) and F4(20)F_{4(-20)}. We find many AdS3_3 critical points with various unbroken gauge symmetries. The relevant background isometries associated to the maximally supersymmetric critical points at which all scalars vanish are also given. These correspond to the superconformal symmetries of the dual conformal field theories in two dimensions.Comment: 37 pages no figures, typos corrected and a little change in the forma

    Analysis of magnetoresistance in arrays of connected nano-rings

    No full text
    We study the anisotropic magnetoresistance (AME) of a 2D periodic square array of connected permalloy rings with periodicity of 1m combining experimental and computational techniques. The computational models consists of two parts: 1) the computation of the magnetization and 2) the computation of the current density. For 1), we use standard micromagnetic methods. For 2), we start from a potential difference applied across the sample, compute the resulting electric potential , and subsequently the corresponding current density based on a uniform conductiviy. We take into account the backreaction of the magnetoresistive effects onto the current density by self-consistently computing the current density and conductivity until they converge. We compare the experimentally measured AMR insight into the characteristics of the AMR data. Finally, we demonstrate the importance of taking into account the spatial variation of the current density when computing the AMR
    corecore