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Abstract We propose a simple behavioral model to analyze situations where (1) a
group of agents repeatedly plays a public goods game within a network structure and
(2) each agent only observes the past behavior of her neighbors, but is affected by the
decisions of the whole group. The model assumes that agents are imperfect conditional
cooperators, that they infer unobserved contributions assuming imperfect conditional
cooperation by others, and that they have some degree of bounded rationality. We
show that our model approximates quite accurately regularities derived from public
goods game experiments.

Keywords Public good · Networks · Decay

JEL Classification: H41 · C92

1 Introduction

A public goods game is an example of an economic situation in which individual and
collective interests are not aligned. Therefore, the Nash equilibrium prediction leads
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to a suboptimal collective outcome. The experimental evidence strongly suggests that
subjects act on a reciprocal basis, following the lines first suggested by Sugden (1984).
In her experiment, Croson (2007) finds a simple reciprocity pattern: subjects try to
match the average contribution, rather than the minimum or the maximum (see also
Fischbacher et al. 2001). In a recent study, Fischbacher and Gächter (2010) find that
conditional cooperation is imperfect; participants systematically fall short of matching
others’ contributions by a relatively small, but significant margin.

Conditional cooperation requires information about others’ contributions. Recent
experimental literature analyzed how limited information about other subjects’ con-
tributions shapes their decisions (Fatas et al. 2010, 2014; Leibbrandt et al. 2014; and
Carpenter et al. 2012). These papers manipulate the level to which agents observe
the contributions of others modeling groups as informational networks. The whole
group still provides the public good, but you may get different information about the
decisions of the other group members. Note that this is a major difference with respect
to the standard theoretical literature on public goods in networks (as in Bramoullé and
Kranton 2007, where agents only benefit from the contributions of her neighbors). The
main finding in the experimental analysis of network structures is that contributions are
lower in incomplete networks, and some incomplete networks (the star) significantly
outperform others (the circle or the line).

Both the Nash prediction and the conditional cooperation logic described above are
unable to explain these differences across networks. In this paper we propose a simple
behavioral model that assumes that (1) agents are imperfect conditional cooperators
and that (2) agents predict unobserved contributions assuming imperfect conditional
cooperation by others. By introducing two additional behavioral assumptions (we
consider that players only react to the most recent experience and that they have a
limited level of rationality) we keep the model purposely simple and stop its recursive
nature.1

This simple formulation is enough to reveal a connection between imperfect con-
ditional cooperation and the presence of decay, one of the main ingredients in some
influential models of network formation (e.g., Jackson and Wolinsky 1996, or Bala and
Goyal 2000).2 In these models, the decay represents frictions that determine the value
of the externalities generated by individual links. In our formulation, the decay factor
will coincide with the parameter capturing the imperfect conditional cooperation.

Besides this theoretical connection, our model captures the differences in contri-
butions across networks. Interestingly, it also predicts well the decisions of players
with the same numbers of neighbors (i.e., nodes with the same degree) in different
networks. We simulate our model and compare the results to the evidence derived
from the experimental results by Fatas et al. (2010) in which groups of four subjects
repeatedly play a public goods game within different network structures (the complete
network, the circle, the line and the star). In our simulations, we estimate the imper-
fect conditional cooperation parameter and fit the model to predict behavior in every
incomplete network, relative to a quite natural benchmark: the complete network.

1 More complex models that extend this recursive nature are interesting, and they left for future research.
2 See also the more recent works by Jackson and Rogers (2005), Galeotti et al. (2006), Feri (2007), Hojman
and Szeidl (2008), and Feri and Meléndez-Jiménez (2013).
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Our results show that the model offers a good approximation to the dynamic evolu-
tion of contributions in different incomplete networks. Moreover, it also fits well with
a range of different players’ network positions (defined by their connectivity to other
players). Rather than describing precise behavioral rules, the model provides a simple
but powerful analytical basis for the deterioration of information, and cooperation, in
networks. Our results suggest that the incompleteness of the network erodes condi-
tional cooperation by making more difficult for subjects to get accurate information
about the decisions of the other group members.

The remainder of the paper is organized as follows. Section 2 presents the model.
In Sect. 3 we describe the experiment. Section 4 describes our simulations procedures.
Section 5 compares the results. Finally, Sect. 6 concludes.

2 The model

Let N = {1, . . ., n} be a group of agents and g a network (set of links) comprised of the
elements of N . We assume that g is undirected, i.e., if an agent is linked to another, the
later is also linked to the former. Given g, the distance between two agents i, j ∈ N ,

denoted by d(i, j) is the (minimum) number of links that separates them.3 For each
i ∈ N , we denote by Ni (g) the set of i’s neighbors in g ∈ G. Time is discrete
t ∈ {1, . . . , T }. At each t , each i ∈ N (simultaneously) decides a contribution to a
public good, ci (t) ∈ [0, m], where m > 0. Previously to this choice, i learns c j (t −1)

for each j ∈ Ni (g). The payoff to player i at period t is determined by

πi

⎛
⎝ci (t),

∑
j∈N\{i}

ci (t)

⎞
⎠ = m − ci (t) + a

∑
j∈N

ci (t) (1)

where a ∈ (1/n, 1).4

As already anticipated, we propose a dynamics based on two assumptions: agents
are imperfect conditional cooperators, and believe that others also behave in the same
way. Specifically, in order to define precisely imperfect conditional cooperation, we
consider that each player would like to match the average contribution of the other
members of the group, but only partially.

Assumption 1 (A1) Agents are imperfect conditional cooperators.
Put in other words, (A1) states that, at each t > 1, each player aims to contribute

δ ∈ (0, 1) times the average contribution of the remaining players of the group in the
previous period.

In the complete network, all agents can directly apply the rule (by taking the average
contribution of the remaining players in the previous round). However, in the incom-

3 As conventionally, if there is no path of links between i and j , we set d(i , j) at ∞.
4 In this context, if we assumed that players are selfish, the unique subgame perfect Nash equilibrium would
result in the inefficient outcome where all players contribute zero at every period.
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plete networks there are players that need to infer the contributions of other members
of the group.

Assumption 2 (A2) Agents infer unobserved contributions assuming imperfect con-
ditional cooperation by others.

To illustrate this assumption consider a player, say i , that does not observe j’s
contribution but observes the contribution of some neighbors of j . Player i knows
that j observes these contributions and, given (A2) believes that player j also behaves
as an imperfect conditional cooperator. Therefore, given her available information,
player i’s inference for j’s contribution is δ times the average contribution of these
commonly observed neighbors.

Note that, in this formulation, we are implicitly making two additional assumptions:

Assumption 3 (A3) Players have bounded memory.
Specifically, (A3) states that when, at some period t , players infer the contribution

of a non-observed agent (at period t − 1), they only use the information they have
from period t − 1. In other words, agents have bounded memory and only use the
information from the previous round.5

Example 1 To illustrate this point, consider three agents (i , j and k) arranged in a line,
(i linked to j , j linked to i and k, and k linked to j). When agent i infers the contribution
of k at period t − 1, in principle, she should use δ times the contribution of j at period
t − 2 (from the belief that, in period t − 1, k responded as an imperfect conditional
cooperator to j’s behavior in the former round). However, by (A3) we consider that i
relies instead on the contribution of j at the immediately previous period.

Assumption 4 (A4) Agents have a limited level of rationality.
Specifically, when players infer the (former) contribution of a non-observed agent

located at distance two in the network, they believe that such an agent has acted as
an imperfect conditional cooperator to the (average) contribution of their common
neighbors (i.e., those players that are commonly observed), but they are myopic in the
sense that they do not take into account that such a player, like themselves, also infers
in the same fashion the contributions of those agents that she cannot directly observe.

Example 1 (continuation) To illustrate this point, consider the former case of players
i , j and k arranged in a line. When i infers the contribution of k at period t − 1, by
(A4) we assume that i only considers that k responds to j’s previous contribution, and
does not incorporate into his prediction for k’s contribution the fact that k did also
form expectations on i’s former contributions in order to choose her own ones.

The following example shows how players infer others’ contributions and make
their own choices in a network where all pairs of players are at distance at most two.

5 Recency effects, meaning that people tend to rely on the most recent experiences to take their decisions,
are a robust phenomenon in cognitive psychology (see, for instance, Jones and Sieck 2003 and Fatas et
al. 2011). Recent studies suggest that the most recent trial has significantly larger effect than previous
experiences, but all previous experiences have an approximately the same effect independently of their
recency. Nevo and Erev (2012) refer to this pattern as the “very recent effect”. In these lines, we simply
assume that subjects rely on the immediate experience, and disregard other (former) information.
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Example 2 (the star) Let n = 4, and assume that player 1 is linked to players 2, 3 and
4 and that players 2, 3 and 4 are only linked to player 1.6 Consider that δ = 0.9 and
that at period 1 all players contribute 50. Then, player 1 (the center), who observes
all others’ former contributions, can directly apply the rule (A1), i.e., average them
and apply the (decay) factor δ = 0.9 and, therefore, contributes 45 at period 2.
Consider now a spoke player, for instance, player 2. Player 2 observes player 1’s
former contribution and, therefore, can use it in order to calculate the average, but she
does also need to infer players 3 and 4’s former contributions. Player 2 is aware
of the fact that player 3, like herself, observes player 1’s former contribution and,
moreover, she believes that player 3 is also an imperfect conditional cooperator ( and
will react by applying factor δ to what she observes). Thus, by (A2)–(A4), at period
2, player 2’s inference of player 3’s former contribution is 0.9 times player 1’s
former contribution, i.e., 45 (the inference for player’s 4 contribution is analogous).
Given this process, by (A1), player 2 contributes 42 at period 2.

This process can be recursively extended to infer contributions of players that are at
distance higher than two. Indeed, we can generalize the process above by replacing the
role played by the contributions of “the common neighbors” (i.e., commonly observed
agents) in the inferences of the contributions of the non-observed agents located at
distance 2. When the distance is higher, we replace them by the contributions of those
players’ neighbors that are closer to the non-observed agent in the network, taking into
account the distance between them. For instance, consider now 4 players arranged in
a line: player 1 linked to player 2, player 2 linked to players 1 and 3, player 3 linked to
players 2 and 4, and player 4 linked to player 3 (see Table 1 below). Consider player
1, who is at distance three from player 4. Given (A2), player 1 believes that player
4 reacts as an imperfect conditional cooperator to what she observes, i.e., to player
3’s contribution. Thus, given (A2)–(A4) player 1’s inference for player 4’s former
contribution is δ times her prediction for player 3’s former contribution, i.e., δ2 times
player 2’s former contribution.

Thus, assumptions (A2)–(A4) have the following technical implication: In order
to infer j’s former behavior, i applies a decay factor δ to k’s contribution per link
that separates k from j , being k the neighbor of i that is located in the (shortest) path
between i and j (if there are more than one shortest path, i averages the contributions
of the respective neighbors). Hence, if k and j are very close, i’s inference on j’s
behavior is close to k’s contribution whereas if they are far away, i’s prediction is close
to zero. Formally, at period t, once a player i ∈ N has observed the contribution of her
neighbors, for all j ∈ N\{i} the inference of i on j’s contribution at period t − 1 is:

ĉi, j (t − 1) = δd(i, j)−1 ·
∑

k∈Ni, j
ck(t − 1)∣∣Ni, j

∣∣ , (2)

where δ ∈ (0, 1) and Ni, j = arg mink∈Ni (g) d(k, j).7

6 This network is depicted in Table 1 below.
7 Note that if j ∈ Ni (g), then Ni, j = { j} and, since d(i, j) = 1, ĉi, j (t − 1) = c j (t − 1). Note also that,
if i and j do not belong to the same component (i.e., if they are not linked through a path of links), then
d(i , j) is set at ∞ (cf. Footnote 3) and, by (2), ĉi, j (t − 1) = 0, i.e., the Nash equilibrium prediction.
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Table 1 Networks

Hence, given (A1)–(A4), the dynamics of contributions is governed by the following
system of difference equations:

For each i ∈ N , ci (t) = δ

∑
j∈N\{i} ĉi, j (t − 1)

n − 1
. (3)

Remark 1 Our behavioral model does not attempt to describe how players start con-
tributing in different networks in VCM games, but rather to show how imperfect
conditional cooperation is strongly consistent with the dynamics of contributions in
incomplete networks. This is the reason why (2) is not defined for t = 1 (since in the
first period the neighbors’ contributions are not observed) and, therefore, our model
remains open with respect to the initial contributions. To close the model, we shall
match the initial contributions to those coming from experimental data, in order to
run the simulations and compare the dynamics across different networks and types of
players (see Sect. 4).

Theoretical implications

In this framework, the evolution of the contribution levels depends on the degree
of imperfectness in agents’ contribution patterns and how it spreads through the
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(incomplete) networks. In this sense, there are two forces that affect to this spread
and that, therefore, may determine whether cooperation can be sufficiently sustained
across time: the average connectivity (total number of links) and the presence of highly
connected players (distribution of links).

On the one hand, if there are many links, players in general directly observe many
others, which make them not to discount too much these others’ contributions when
acting as imperfect conditional cooperators.

On the other hand, having highly connected players can be important to sustain
cooperation. These players directly observe many others (and, therefore, are expected
to produce high contribution levels since they do not discount very much these others’
contributions). At the same time these highly connected players are the reference point
of many (less connected) players to behave as conditional cooperators. Thus, they can
act as coordinators that avoid that contribution levels fall too fast.

We investigate which of these two forces dominates. To this aim, we consider the
same four network structures studied by Fatas et al. (2010): The complete network,
the circle, the star and the line, depicted in Table 1 above. The complete network (the
baseline treatment) has the maximum number of links and, at the same time, all the
players are maximally connected. Thus, our model predicts that the complete network
should produce the highest contribution levels. On the other extreme is the line, which
has the lowest number of links (across connected networks) and, at the same time,
does not have any maximally connected player. This network is expected to yield the
lowest contribution levels. In between, we have the circle and the star. The star has less
links (the same than the line) but has one maximally connected player (the center),
whereas the circle has more links but no maximally connected player.

The experimental evidence derived from Fatas et al. (2010) shows that, indeed, the
complete network and the line respectively produce the maximum and minimum con-
tribution levels. Moreover they obtain that the star outperforms the line, and produces
similar outcomes to the complete network, which suggests that it is the distribution,
rather than the total amount of information what matter to sustain contributions to
the public good. The circle produces lower average contribution levels than the star
and higher than the line, but these differences are not found to be significant. As we
shall see, our simulations offer quite a good approximation to the evolution of the
experimental data, which suggests that a pattern of imperfect conditional cooperation
can be appropriate to explain behavior in public good games played in networks.

Finally, if we focus on the specific case of the star network, we note that our model
predicts a peculiar “oscillating” dynamics due to the presence of a central (highly
connected) player and a group of peripheral players: Although contributions decrease
over time (due to the imperfect conditional cooperation assumption), the slope varies
from one period to another due to the asymmetric informational regime of the center
and the spokes.

To illustrate the source of this dynamics in the star, assume a situation where all
players start contributing the same amount (say k) at period 1. Initially, the dynamics
leads to lower contributions of the spokes than the center at period 2 (due to the limited
observability of the spokes). The average drop of the contributions is sharp due to the
higher number of spokes. The next period, the drop of the contributions of the spokes
(reacting to a relatively higher contribution of the center) is softer than the drop of
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the contribution the center (reacting to relatively lower contributions of the spokes at
period 2). This makes that the drop of the average contribution is now softer (again
due to the higher number of spokes). This “oscillating dynamics” then repeats over
time (from odd to even periods). This argument is formalized in the following lemma,
which provides the analytic solution of the system of difference equations (3) for this
specific case. The proof is in Appendix A2.

Lemma 1 Let n = 4 and g be the star network. If c1(1) = c2(1) = c3(1) = c4(1) = k,

then, assuming (A1)–(A4), the players’ contributions at each t ≥ 1 are as follows:8

• If t is odd, c1(t) = c2(t) = c3(t) = c4(t) = kδt−1
(√

1+2δ
3

)t−1

• If t is even, c1(t) = kδt−1
(√

1+2δ
3

)t−2

and c2(t) = c3(t) = c4(t) = kδt−1
(√

1+2δ
3

)t

Thus, across time the star is expected to yield a volatile behavior. As we shall see,
this special behavior is reflected both in the experimental data and the simulations:
There is a trend to decrease contributions across time in all networks, but in the star
we observe that this occurs relatively more abruptly (with more pronounced peaks).

3 The experimental design

The experiment was conducted at LINEEX (Laboratory for Research in Experimental
Economics), at the University of Valencia. The participants were 144 business and
economics undergraduate students, all of them inexperienced in public goods games
experiments or network experiments.

We consider groups of 4 subjects (n = 4). The experiment consists of four treat-
ments. Each treatment corresponds to a network: the complete network (N1), the circle
(N2), the line (N3) and the star (N4), depicted in Table 1.

We follow a partners matching, that is, the group composition is kept constant.
Moreover, each subject’s position within a network is randomly determined at the
beginning of the experiment and fixed throughout the experiment.

The experiment was computerized using z-tree (Fischbacher 2007). Along the
experiment subjects play the Voluntary Contribution Mechanism (VCM) game for
20 rounds, with payoffs defined by (1), where n = 4, m = 50 and a = 0.5. In this
game, links involve the information about others’ contributions.9 After each round,
the computer screen of each subject displays her initial endowment, the contribution
of the group members linked to her and her earnings.10 In Fig. 1 we present z-tree
screen shots.

8 Note that, since δ < 1,

√
1+2δ

3 < 1 and, therefore,

(√
1+2δ

3

)t−2
>

(√
1+2δ

3

)t
.

9 A copy of the instructions, translated into English, can be found in the Appendix.
10 Note that having information about the own payoff provides all agents with the possibility derive from it
(by making some calculations) the average contribution of the other members of the group in the previous
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Fig. 1 z-tree screen shots for player 1 in network N4 (star)

Footnote 10 continued
round, regardless which information about contributions they get from the network. Thus, if players used
this information, there should be no observed differences in the dynamics across networks nor across types
of players. Since this is in contrast to the regularities observed in Fatas et al. (2010), we assume that agents
do not make use of the information about payoffs to infer former contributions and that they rely instead
only on the information about others’ contributions that they get from the network. This somehow extends
the bounded rationality assumption made in (A4).
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We ran 8 sessions (two for each treatment) and no subject participated in more than
one session. Specifically, 36 subjects participated in treatment N1 (6 + 3 groups, in
two sessions), 36 subjects participated in N2 (6 + 3 groups), 40 subjects participated
in N3 (6 + 4 groups), and 32 subjects participated in N4 (6 + 2 groups). The average
payment was around 14e and, on average, a session lasted around 50 min, including
the initial instructions and the payment of subjects.

4 Simulations

In analogy to the experiment, we focus on the case of four players (n = 4), and the
network structures represented in Table 1 (N1, N2, N3, and N4). We also set T = 20,
m = 50 and a = 0.5.

We simulate the model considering the initial conditions derived from each of the
experimental groups. We obtain one simulation per group and, then, average them. In
particular, we calculate the average contribution that each subject who participated in
the experiment made in the first block of five rounds, which serves as initial conditions
for the simulation of each group.11 The initial contributions therefore reflect: (1) how
agents perceive the network structure (the network and their position in the network)
and (2) how this structure affects to their initial behavior.

5 Results

In Table 2, we report the average contribution in each network given from the experi-
mental data and compare it to the results of the simulations of our model for δ = 0.97057
(within brackets). We have calibrated δ using the experimental data of our sessions for
the complete network. In the complete network, where each agent observes all others’
contributions, δ purely measures the degree of imperfectness in the subjects’ pattern
of conditional cooperation (A1). This contrasts with the other incomplete networks,
where additional assumptions are needed. Hence, we select the parameter value that
better fits the data for the complete network treatments, and use it to simulate [using
(2), (3)] the evolution of the contributions of each experimental group.

In Table 2, we present this comparison disaggregating by types of players (players
with different degree). Note that, given our set of networks (see Table 1), there are
players with degree 1 (T1 players, with one link), degree 2 (T2 players, with two links),
and degree 3 (T3 players, with three links).12

Contributions across networks and types observed in the experiment (Table 2) are
significantly different from a statistically point of view. As reported in Fatas et al.

11 Similar results are obtained when the initial conditions are directly taken from round 1. However, the
simulations fit the experimental data more accurately when we take as starting point the average of the first
block of five rounds. This reduces the typical noise and confusion faced by subjects in the very first round of
the experiment, which can be remarkable when there are no trial rounds (as it is the case in our experiment).
12 Specifically, N1 consists of four T3 players, N2 consists of four T2 players, N3 consists of two T2
players and two T1 players, and N4 consists of one T3 player and three T1 players.
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Table 2 Average contribution (all periods) experimental data vs. simulations (δ = 0.97057)

Network Average contribution per type of player

All players With 1 link With 2 links With 3 links

Complete 23.647 (23.647) 23.647 (23.647)

Circle 18.9 (17.84) 18.9 (17.84)

Line 16.046 (14.81) 16.532 (14.76) 15.56 (14.86)

Star 23.879 (23.17) 23.385 (23.09) 25.362 (23.39)

Values of the simulations within brackets

(2010),13 contributions in the line network are significantly lower than in the complete
and star networks across types, even if we control for first-round decisions and lagged
contributions. Contributions in the circle network are never significantly different from
contributions in the other three networks.

The econometric analysis of differences between types reveals an interesting pat-
tern. Differences between players with the same number of links in the same het-
erogeneous network can only be explained using decisions in the first round and the
conditional cooperation dynamics (see Table 4 in page 408 of Fatas et al. 2010). In
both the line and the star networks, conditional cooperation, measured by the lagged
average contribution of the other players in the group, is significantly and positively
driving contributions. Interestingly, a similar result is obtained when the comparison
is made across networks, for the same players’ types, with the exception of T1 players
(with only one link): only decisions in the star network are significantly larger than in
the line for T1 players (see Table 5 in page 409 of Fatas et al. 2010).

Table 2 shows that the outcomes of the simulations with δ close to 1 (δ = 0.97057)
are very similar to the experimental results.14 In our view, the model captures the
effect of incompleteness in a very accurate way, both across networks (N1, N2, N3
and N4) and types of players (T1, T2 and T3).

In Fig. 2, we analyze the same comparison (simulation vs. experimental data) across
the 20 rounds of play. Again, at each round the average contribution in N1 is normalized
to 1. We present this comparison by pairs of graphs: The graphs on the left correspond
to the simulations (δ = 0.97057), and those on the right correspond to the experimental
data. The first pair of graphs shows the evolution of the average contribution across
networks (N1, N2, N2 and N4). Then, we compare the (average) contributions of each

13 See Tables 2 and 3 in pages 405 and 406.
14 We believe our theory is not designed to be econometrically tested in the laboratory. As a deterministic
model, the model generates a set of powerful intuitions about how different types of agents behave in different
incomplete networks. In order to provide a basic measure of the model’s goodness of fit, and given that for
each experimental group there is a simulated one for which the initial contribution of each simulated agent
is the average contribution of the corresponding experimental subject in the first five rounds, a comparison
using Wilcoxon matched-pairs signed-rank tests at the group level can be done. We do not observe any
significant difference between the experimental data and the simulation generated by our model neither
when we use all the rounds, nor when we focus in rounds 6 to 20 or in the second half of the experiment.
The results of the tests, together with some descriptive statistics of the simulations, are included in the
appendix (see Table 3).
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Fig. 2 Evolution of average contribution simulations with δ = 0.97057 (left) vs. experimental data (right)
across rounds

type of player (T1, T2 and T3) across different networks: T1 players in N3 and N4;
T2 players in N2 and N3; and, finally, T3 players in N1 and N4.

As Fig. 2 reveals, our stylized model offers good approximations to the regularities
derived from the experimental data: a small degree of imperfectness in the conditional
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cooperation pattern (associated to δ = 0.97057) suffices to capture the dynamics of
the experiment. This result holds both when we analyze the evolution of contributions
across networks and when we compare the behavior of players with the same degree
(same type) located in different networks.

As we can observe in Fig. 2, the complete network and the line produce, respectively,
the highest and lowest contribution levels across time, both in the simulations and in
the experiment. We also observe that the star yields similar outcomes to the complete
network, whereas the outcomes of the circle are in between those of the complete
network and the line. This suggests that it is the distribution of links (presence of
highly connected players), rather than the total amount of information, what matters
to sustain contributions to the public good.

We also note in Fig. 2 that the star presents a (relatively) more volatile (cyclical)
behavior than the other networks. This holds both at the aggregate level and when
we study the evolution of behavior of different types, which confirms the theoretical
implications of our model regarding this asymmetric case of one (highly connected)
central player and a group of peripheral players.

Finally, we note that in all networks, the experimental data present a sharp decline
of contributions in the final rounds that is not reflected in the simulations. This abrupt
decline is due to the end-game effect (typical of many experiments) that erodes the
possibilities of cooperation, and that is not included in the assumptions of our model.

6 Conclusion

This paper provides a new application for decay (interpreted as the degree of imperfect-
ness in the pattern of conditional cooperation) in networks. Rather than determining
the (reduction in the) value of the externalities generated by individual links, we use
the decay to model the accuracy losses associated to the network incompleteness in a
public goods environment.

From our assumptions, there are two main forces that can affect to which extent
the imperfectness of conditional cooperation spreads through the network (decay)
and that, therefore, may determine whether cooperation can be sufficiently sustained
across time: the average connectivity (total number of links) and the presence of highly
connected players (distribution of links). Our results (both the experimental data and
the simulations) suggest that it is the network architecture (in particular, the presence
of highly connected players), rather than the total amount of information, what fosters
higher contribution levels.

Moreover, the fit of the outcomes of our model to the experimental data
suggests that, in a social dilemma situation, the incompleteness of the network
structure may effectively erode conditional cooperation, by making more difficult
for subjects to get accurate information about the decisions of the other group
members.

Finally, it is worth mentioning that to some extent our paper is related to the recent
literature on rank-based behavioral models (see, e.g., Boyce et al. 2010), in the sense
that networks can matter as they provide the subjects with information to locate them-
selves within the ranking of contributions. To illustrate this point note, for instance,
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that to be able to observe the central player of a star is very informative, since such a
player knows the complete ranking of contributions, as compared, for example, to the
more central agents in the line. In our view, a deeper and systematic analysis of the
connections between informational networks and rank-based behavioral models is a
very interesting topic that merits future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

A1: Experimental instructions15

The aim of this Experiment is to study how individuals make decisions in certain
contexts. The instructions are simple. If you follow them carefully you will earn a
non-negligible amount of money in cash at the end of the experiment. Individual
payments will remain private, as nobody will know the other participants’ payments.
Any communication among you is strictly forbidden and will result in an immediate
exclusion from the Experiment.

1. The experiment consists on 20 rounds. In each round you are member of the
same group of four participants. Group composition is randomly determined at
the beginning of the experiment and does not vary along it. You will not know the
identities of the other group members.

2. At the beginning of the experiment, you will be assigned a player number, which
can be 1, 2, 3 or 4. This number will not change along all the experiment. Therefore,
in your group there will be a player 1, a player 2, a player 3 and a player 4. You
will be one of them.

3. At each round, each participant receives an endowment of 50 ECUS. Your unique
decision consists on choosing how many of them you assign to the Group Account.
The remaining ECUS will remain in you Private Account.

4. After these decisions are made, each participant will receive information about
the assignments to the Group Account made by some other group members. This
information is summarized in the following figure:

15 We provide the experimental instruction of the star treatment. The instructions of the other treatments
(complete network, circle and line) are analogous and just differ in point 4. Instructions are translated from
Spanish. Original instructions are available from authors upon request.
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Player 1 will observe the assignments of players 2, 3 and 4
Player 2 will observe the assignment of player 1
Player 3 will observe the assignment of player 1
Player 4 will observe the assignment of player 1

5. Your round profits comes both from the group and private accounts. To calculate the
benefit of the Group Account we first sum the assignments that all group members
have made to the Group Account (i.e., we sum the assignments of players 1, 2, 3
and 4 to the Group Account). This sum of assignments to the Group Account is
multiplied by 2, and divided in 4 equal shares (one share for each member of the
group).

6. The Private Account benefit equals your assignment to the Private Account and
does not depend on the decisions made by the other players.

7. To summarize, your benefit in a given round is determined as follows:

8. At the end of every round, you will get information about current and past profits.
The information consists of the benefit you obtain from the Group Account, the
benefit you obtain from the Private Account, your total individual benefit and your
accumulated benefit up to that moment.

9. At the beginning of the experiment, just by showing up, you will start with an
accumulated benefit of 500 ECU (Experimental Currency Units). The benefits
that you obtain during the experiments will be added to that amount. At the end of
the experiment your cumulative profits (plus the showing-up fee) will be privately
paid in cash at the exchange rate of 100 ECU = e1.

A2: The star with homogeneous initial conditions

Proof of Lemma 1 We analytically solve the system of difference equations given by
(3) for the star network when c1(1) = c2(1) = c3(1) = c4(1) = k. Since in the
star, assuming homogeneous initial conditions and given (3), all the spokes are in an
identical situation at every period, it holds that, for all t ≥ 1, c2(t) = c3(t) = c4(t),
Therefore, we have a system of two difference equations, given by:

c1(t) = δ · c2(t − 1) (4)

c2(t) = δ · 1 + 2δ

3
c1(t − 1) (5)

Substituting (5) into (4), we get the following 2nd order difference equation

c2(t + 2) − δ2 · 1 + 2δ

3
c2(t) = 0.
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Whose characteristic equation has two real roots: ±δ ·
√

1+2δ
3 . Thus, we get the fol-

lowing solution for the difference equation:

c2(t) =
(

δ ·
√

1 + 2δ

3

)t (
α + (−1)tβ

)
(6)

where α, β are constants. To get the values of α and β, we rely on the fact that

c1(1) = c2(1) = k and that, by (5), c2(2) = kδ
˙1+2δ
3 . Thus, evaluating (6) at t = 1 and

t = 2, we get the following system of equations:

δ ·
√

1 + 2δ

3
(α − β) = k

δ · (α + β) = k

Which yields the following solution

α = k

(
2δ

√
1 + 2δ

3

)−1

·
(

1 +
√

1 + 2δ

3

)

β = −k

(
2δ

√
1 + 2δ

3

)−1

·
(

1 −
√

1 + 2δ

3

)

Introducing these values in (6) we get the solution for c2(t):

c2(t) = k

2

(
δ ·

√
1 + 2δ

3

)t−1 (
1 +

√
1 + 2δ

3
− (−1)t

(
1 −

√
1 + 2δ

3

))
(7)

and, then, using (4), we get the analytic solution for c1(t):

c1(t) = kδ

2

(
δ ·

√
1 + 2δ

3

)t−2 (
1 +

√
1 + 2δ

3
− (−1)t−1

(
1 −

√
1 + 2δ

3

))
(8)

We can simplify (7), (8) just by noting that whether t is odd or even deter-
mines the sign of the terms (−1)t and (−1)t−1, and the lemma directly follows.
Q.E.D.

A3: Additional tables

See Table 3.
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Table 3 Average contribution. Experimental data vs. simulations (= 0.97057)

Rounds Network Average contribution per type of player

All players With 1 link With 2 links With 3 links

[1–20] Complete 23.64722 23.64722

23.64724 23.64724

(0.5147) (0.5147)

Circle 18.9 18.9

17.84498 17.84498

(0.7671) (0.7671)

Line 16.04625 16.5325 15.56

14.8135 14.76313 14.86456

(0.2845) (0.4446) (0.5751)

Star 23.87969 23.38542 25.3625

23.17174 23.09768 23.39389

(0.8886) (0.8886) (0.1614)

[6–20] Complete 21.21482 21.21482

21.80427 21.80427

(0.5147) (0.5147)

Circle 16.74815 16.74815

15.97463 15.97463

(0.8590) (0.8590)

Line 13.85167 14.04 13.66333

13.03352 12.93704 13.13001

(0.5751) (0.5751) (0.6465)

Star 21.24167 21.00278 21.95833

20.80499 20.80439 20.80678

(0.8886) (0.8886) (0.8886)

[11–20] Complete 18.63333 18.63333

20.14195 20.14195

(0.3743) (0.3743)

Circle 14.83611 14.83611

14.34655 14.34655

(0.8590) (0.8590)

Line 10.67 10.57 10.77

11.53658 11.45141 11.62175

(0.5076) (0.4446) (0.4446)

Star 19.26875 19.375 18.95

18.62355 18.56404 18.80211

(0.5754) (0.6744) (1.000)

In each cell: Average contribution from the experimental data
Average contribution from the simulations
(p value, Wilcoxon matched-pairs signed-rank test)
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