88 research outputs found

    Elucidation of the pre-nucleation phase directing metal-organic framework formation

    Get PDF
    Metal-organic framework (MOF) crystallization is governed by molecular assembly processes in the pre-nucleation stage. Yet, unravelling these pre-nucleation pathways and rationalizing their impact on crystal formation poses a great challenge since probing molecular-scale assemblies and macroscopic particles simultaneously is very complex. Herein, we present a multimodal, integrated approach to monitor MOF nucleation across multiple length scales by combining in situ optical spectroscopy, mass spectrometry, and molecular simulations. This approach allows tracing initial metal-organic complexes in solution and their assembly into oligomeric nuclei and simultaneously probing particle formation. During Co-ZIF-67 nucleation, a metal-organic pool forms with a variety of complexes caused by ligand exchange and symmetry reduction reactions. We discriminate complexes capable of initiating nucleation from growth species required for oligomerization into frameworks. Co4-nuclei are observed, which grow into particles following autocatalytic kinetics. The geometric and compositional variability of metal-organic pool species clarifies long-debated amorphous zeolitic imidazolate framework (ZIF)-particle nucleation and non-classic pathways of MOF crystallization

    Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy

    No full text
    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters –metal/linker ratio, temperature, and metal type– on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties

    Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy

    No full text
    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters –metal/linker ratio, temperature, and metal type– on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties

    Decoding nucleation and growth of zeolitic imidazolate framework thin films with atomic force microscopy and vibrational spectroscopy

    No full text
    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties

    Multi-Spectroscopic Interrogation of the Spatial Linker Distribution in Defect-Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase

    Get PDF
    In the past few years, defect-engineered metal–organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non-defective and defective linkers, namely 1,3,5-benzenetricarboxylate (BTC) and 5-cyano-1,3-benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST-1 topology. Raman micro-spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu3(btc)2−x(cydc)x] crystals, with the CYDC linker incorporated into defect-rich or defect-free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co-crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X-ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro-spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal–organic frameworks

    Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu 3

    No full text
    In the past few years, defect-engineered metal-organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non-defective and defective linkers, namely 1,3,5-benzenetricarboxylate (BTC) and 5-cyano-1,3-benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST-1 topology. Raman micro-spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu-3(btc)(2-x)(cydc)(x)] crystals, with the CYDC linker incorporated into defect-rich or defect-free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co-crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X-ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro-spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal-organic frameworks
    corecore