8 research outputs found

    Computing Approximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games

    Get PDF
    We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial resource cost functions and present an algorithm that computes approximate pure Nash equilibria with a polynomial number of strategy updates. Since computing a single strategy update is hard, we apply sampling techniques which allow us to achieve polynomial running time. The algorithm builds on the algorithmic ideas of [7], however, to the best of our knowledge, this is the first algorithmic result on computation of approximate equilibria using other than proportional shares as player costs in this setting. We present a novel relation that approximates the Shapley value of a player by her proportional share and vice versa. As side results, we upper bound the approximate price of anarchy of such games and significantly improve the best known factor for computing approximate pure Nash equilibria in weighted congestion games of [7].Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-71924-5_1

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Improving Approximate Pure Nash Equilibria in Congestion Games

    Get PDF
    Congestion games constitute an important class of games to model resource allocation by different users. As computing an exact or even an approximate pure Nash equilibrium is in general PLS-complete, Caragiannis et al. (2011) present a polynomial-time algorithm that computes a (2+ϵ2 + \epsilon)-approximate pure Nash equilibria for games with linear cost functions and further results for polynomial cost functions. We show that this factor can be improved to (1.61+ϵ)(1.61+\epsilon) and further improved results for polynomial cost functions, by a seemingly simple modification to their algorithm by allowing for the cost functions used during the best response dynamics be different from the overall objective function. Interestingly, our modification to the algorithm also extends to efficiently computing improved approximate pure Nash equilibria in games with arbitrary non-decreasing resource cost functions. Additionally, our analysis exhibits an interesting method to optimally compute universal load dependent taxes and using linear programming duality prove tight bounds on PoA under universal taxation, e.g, 2.012 for linear congestion games and further results for polynomial cost functions. Although our approach yield weaker results than that in Bil\`{o} and Vinci (2016), we remark that our cost functions are locally computable and in contrast to Bil\`{o} and Vinci (2016) are independent of the actual instance of the game

    Congestion Games with Complementarities

    Get PDF
    We study a model of selfish resource allocation that seeks to incorporate dependencies among resources as they exist in modern networked environments. Our model is inspired by utility functions with constant elasticity of substitution (CES) which is a well-studied model in economics. We consider congestion games with different aggregation functions. In particular, we study LpL_p norms and analyze the existence and complexity of (approximate) pure Nash equilibria. Additionally, we give an almost tight characterization based on monotonicity properties to describe the set of aggregation functions that guarantee the existence of pure Nash equilibria.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-57586-5_1

    Congestion Games with Mixed Objectives

    No full text
    We study a new class of games which generalizes congestion games and its bottleneck variant. We introduce congestion games with mixed objectives to model network scenarios in which players seek to optimize for latency and bandwidths alike. We characterize the existence of pure Nash equilibria (PNE) and the convergence of improvement dynamics. For games that do not possess PNE we give bounds on the approximation ratio of approximate pure Nash equilibria.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-48749-6_4

    Der Exkretionsapparat

    No full text
    corecore