53 research outputs found

    Physiological responses to folate overproduction in lactobacillys plantarum WCFS1.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in <it>Lactobacillus plantarum </it>WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells.</p> <p>Results</p> <p>Metabolite formation and gene expression were determined in a folate-overproducing- and wild-type strain. Differential metabolomics analysis of intracellular metabolite pools indicated that the pool sizes of 18 metabolites differed significantly between these strains. The gene expression profile was determined for both strains in pH-regulated chemostat culture and batch culture. Apart from the expected overexpression of the 6 genes of the folate gene cluster, no other genes were found to be differentially expressed both in continuous and batch cultures. The discrepancy between the low transcriptome and metabolome response and the 25% growth rate reduction of the folate overproducing strain was further investigated. Folate production per se could be ruled out as a contributing factor, since in the absence of folate production the growth rate of the overproducer was also reduced by 25%. The higher metabolic costs for DNA and RNA biosynthesis in the folate overproducing strain were also ruled out. However, it was demonstrated that folate-specific mRNAs and proteins constitute 8% and 4% of the total mRNA and protein pool, respectively.</p> <p>Conclusion</p> <p>Folate overproduction leads to very little change in metabolite levels or overall transcript profile, while at the same time the growth rate is reduced drastically. This shows that <it>Lactobacillus plantarum </it>WCFS1 is unable to respond to this growth rate reduction, most likely because the growth-related transcripts and proteins are diluted by the enormous amount of gratuitous folate-related transcripts and proteins.</p

    Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry

    Get PDF
    Direct-injection mass spectrometry (DIMS) is a means of rapidly obtaining metabolomic phenotype data in both prokaryotes and eukaryotes. Given our generally poor understanding of Campylobacter metabolism, the high-throughput and relatively simple sample preparation of DIMS has made this an attractive technique for metabolism-related studies and hypothesis generation, especially when attempting to analyze metabolic mutants with no clear phenotype. Here we describe a metabolomic fingerprinting approach with sampling and extraction methodologies optimized for direct-injection electrospray ionization mass spectrometry (ESI-MS), which we have used as a means of comparing wild-type and isogenic mutant strains of C. jejuni with various metabolic blocks

    Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry

    Get PDF
    Direct-injection mass spectrometry (DIMS) is a means of rapidly obtaining metabolomic phenotype data in both prokaryotes and eukaryotes. Given our generally poor understanding of Campylobacter metabolism, the high-throughput and relatively simple sample preparation of DIMS has made this an attractive technique for metabolism-related studies and hypothesis generation, especially when attempting to analyze metabolic mutants with no clear phenotype. Here we describe a metabolomic fingerprinting approach with sampling and extraction methodologies optimized for direct-injection electrospray ionization mass spectrometry (ESI-MS), which we have used as a means of comparing wild-type and isogenic mutant strains of C. jejuni with various metabolic blocks

    Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications

    Get PDF
    Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore