14,497 research outputs found

    Global stability analysis of birhythmicity in a self-sustained oscillator

    Full text link
    We analyze global stability properties of birhythmicity in a self-sustained system with random excitations. The model is a multi-limit cycles variation of the van der Pol oscillatorintroduced to analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients α\alpha and β\beta. With a random excitation, such as a Gaussian white noise, the attractor's global stability is measured by the mean escape time τ\tau from one limit-cycle. An effective activation energy barrier is obtained by the slope of the linear part of the variation of the escape time τ\tau versus the inverse noise-intensity 1/D. We find that the trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow range of the parameters.Comment: 17 pages, 8 figures, to appear on Choas, 201

    Making electromagnetic wavelets

    Full text link
    Electromagnetic wavelets are constructed using scalar wavelets as superpotentials, together with an appropriate polarization. It is shown that oblate spheroidal antennas, which are ideal for their production and reception, can be made by deforming and merging two branch cuts. This determines a unique field on the interior of the spheroid which gives the boundary conditions for the surface charge-current density necessary to radiate the wavelets. These sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition

    Effective Fokker-Planck Equation for Birhythmic Modified van der Pol Oscillator

    Full text link
    We present an explicit solution based on the phase-amplitude approximation of the Fokker-Planck equation associated with the Langevin equation of the birhythmic modified van der Pol system. The solution enables us to derive probability distributions analytically as well as the activation energies associated to switching between the coexisting different attractors that characterize the birhythmic system. Comparing analytical and numerical results we find good agreement when the frequencies of both attractors are equal, while the predictions of the analytic estimates deteriorate when the two frequencies depart. Under the effect of noise the two states that characterize the birhythmic system can merge, inasmuch as the parameter plane of the birhythmic solutions is found to shrink when the noise intensity increases. The solution of the Fokker-Planck equation shows that in the birhythmic region, the two attractors are characterized by very different probabilities of finding the system in such a state. The probability becomes comparable only for a narrow range of the control parameters, thus the two limit cycles have properties in close analogy with the thermodynamic phases

    Searching atomic spin contrast on nickel oxide (001) by force microscopy

    Get PDF
    The (001) surface of NiO, an antiferromagnet at room temperature, was investigated under ultra-high vacuum conditions with frequency modulation atomic force microscopy (FM-AFM). The antiferromagnetic coupling between ions leads to a spin superstructure on (001) surfaces. Exchange interaction between the probe of a force microscope and the NiO (001) surface should allow to image spin superstructures in real space. The surface was imaged with three different probing tips: nonmagnetic W tips, ferromagnetic Co tips and antiferromagnetic NiO tips - and atomic resolution was achieved with all three of them in various distance regimes and in several channels. Evidence for spin contrast was obtained in experiments that utilize NiO tips and oscillation amplitudes in the \AA-regime, where optimal signal-to-noise ratio is expected. The spin contrast is weaker than expected and only visible in Fourier space images.Comment: 7 pages, 6 figures, submitted to Physical Review

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector spin-orbit terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the systematic framework of chiral perturbation theory by computing the isovector spin-orbit terms: (ρpρn)(JpJn)Gso(kf)+(JpJn)2GJ(kf)(\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so}(k_f)+ (\vec J_p-\vec J_n)^2 G_J(k_f). The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a good equation of state of isospin-symmetric nuclear matter. We find that the parameterfree results for the (density-dependent) strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) agree fairly well with that of phenomenological Skyrme forces for densities ρ>ρ0/10\rho > \rho_0/10. At very low densities a strong variation of the strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) with density sets in. This has to do with chiral singularities mπ1m_\pi^{-1} and the presence of two competing small mass scales kfk_f and mπm_\pi. The novel density dependencies of Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) as predicted by our parameterfree (leading order) calculation should be examined in nuclear structure calculations.Comment: 9 pages, 3 figure, published in: Physical Review C68, 014323 (2003

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.

    Developmental time windows for spatial growth generate multiple-cluster small-world networks

    Full text link
    Many networks extent in space, may it be metric (e.g. geographic) or non-metric (ordinal). Spatial network growth, which depends on the distance between nodes, can generate a wide range of topologies from small-world to linear scale-free networks. However, networks often lacked multiple clusters or communities. Multiple clusters can be generated, however, if there are time windows during development. Time windows ensure that regions of the network develop connections at different points in time. This novel approach could generate small-world but not scale-free networks. The resulting topology depended critically on the overlap of time windows as well as on the position of pioneer nodes

    Saturn as a radio source

    Get PDF
    Magnetospheric radio emissions, Saturn electrostatic discharges, inferred source locations, and emission theories are addressed

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe
    corecore