1,101 research outputs found

    Numerical Studies of the Two Dimensional XY Model with Symmetry Breaking Fields

    Full text link
    We present results of numerical studies of the two dimensional XY model with four and eight fold symmetry breaking fields. This model has recently been shown to describe hydrogen induced reconstruction on the W(100) surface. Based on mean-field and renormalization group arguments,we first show how the interplay between the anisotropy fields can give rise to different phase transitions in the model. When the fields are compatible with each other there is a continuous phase transition when the fourth order field is varied from negative to positive values. This transition becomes discontinuous at low temperatures. These two regimes are separated by a multicritical point. In the case of competing four and eight fold fields, the first order transition at low temperatures opens up into two Ising transitions. We then use numerical methods to accurately locate the position of the multicritical point, and to verify the nature of the transitions. The different techniques used include Monte Carlo histogram methods combined with finite size scaling analysis, the real space Monte Carlo Renormalization Group method, and the Monte Carlo Transfer Matrix method. Our numerical results are in good agreement with the theoretical arguments.Comment: 29 pages, HU-TFT-94-36, to appear in Phys. Rev. B, Vol 50, November 1, 1994. A LaTeX file with no figure

    Current-voltage scaling of a Josephson-junction array at irrational frustration

    Full text link
    Numerical simulations of the current-voltage characteristics of an ordered two-dimensional Josephson junction array at an irrational flux quantum per plaquette are presented. The results are consistent with an scaling analysis which assumes a zero temperature vortex glass transition. The thermal correlation length exponent characterizing this transition is found to be significantly different from the corresponding value for vortex-glass models in disordered two-dimensional superconductors. This leads to a current scale where nonlinearities appear in the current-voltage characteristics decreasing with temperature TT roughly as T2T^2 in contrast with the T3T^3 behavior expected for disordered models.Comment: RevTex 3.0, 12 pages with Latex figures, to appear in Phys. Rev. B 54, Rapid. Com

    A Physical Model for Co-evolution of QSOs and of their Spheroidal Hosts

    Full text link
    At variance with most semi-analytic models, in the Anti-hierarchical Baryon Collapse scenario (Granato et al. 2001, 2004) the main driver of the galaxy formation and evolution is not the merging sequence but are baryon processes. This approach emphasizes, still in the framework of the hierarchical clustering paradigm for dark matter halos, feedback processes from supernova explosions and from active nuclei, that tie together star formation in spheroidal galaxies and the growth of black holes at their centers. We review some recent results showing the remarkably successful predictive power of this scenario, which allows us to account for the evolution with cosmic time of a broad variety of properties of galaxies and active nuclei, which proved to be very challenging for competing models.Comment: Invited talk at the Specola Vaticana Workshop on "AGN and Galaxy Evolution", Castel Gandolfo, 3-6 October 2005, 10 pages, 2 figure

    From First Galaxies to QSOs: feeding the baby monsters

    Full text link
    We present a physical model for the coevolution of massive spheroidal galaxies and active nuclei at their centers. Supernova heating is increasingly effective in slowing down the star formation and in driving gas outflows in smaller and smaller dark matter halos. Thus the more massive protogalaxies virializing at early times are the sites of faster star formation. The correspondingly higher radiation drag causes a faster angular momentum loss by the gas and induces a larger accretion rate onto the central black hole. In turn, the kinetic energy of the outflows powered by the active nuclei can unbind the residual gas in a time shorter for larger halos. The model accounts for a broad variety of dynamical, photometric and metallicity properties of early-type galaxies, for the M_BH -- \sigma relation and for the local supermassive black-hole mass function.Comment: 6 pages, contributed paper to Proceedings of the Conference on "Growing Black Holes" held in Garching, Germany, on June 21-25, 2004, edited by A. Merloni, S. Nayakshin and R. Sunyaev, Springer-Verlag series of "ESO Astrophysics Symposia

    Dust Emission from Active Galactic Nuclei

    Get PDF
    Unified schemes of active galactic nuclei (AGN) require an obscuring dusty torus around the central source, giving rise to Seyfert 1 line spectrum for pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the observed IR is in broad agreement with this scheme, the behavior of the 10 micron silicate feature and the width of the far-IR emission peak remained serious problems in all previous modeling efforts. We show that these problems find a natural explanation if the dust is contained in about 5-10 clouds along radial rays through the torus. The spectral energy distributions (SED) of both type 1 and type 2 sources are properly reproduced from different viewpoints of the same object if the visual optical depth of each cloud is larger than about 60 and the clouds' mean free path increases roughly in proportion to radial distance.Comment: 11 pages, submitted to ApJ Letter

    Astrophysical and Cosmological Information from Large-scale sub-mm Surveys of Extragalactic Sources

    Get PDF
    We present a quantitative analysis of the astrophysical and cosmological information that can be extracted from the many important wide-area, shallow surveys that will be carried out in the next few years. Our calculations combine the predictions of the physical model by Granato et al. (2004) for the formation and evolution of spheroidal galaxies with up-to-date phenomenological models for the evolution of starburst and normal late-type galaxies and of radio sources. We compute the expected number counts and the redshift distributions of these source populations separately and then focus on proto-spheroidal galaxies. For the latter objects we predict the counts and redshift distributions of strongly lensed sources at 250, 350, 500, and 850 micron, the angular correlation function of sources detected in the surveys considered, the angular power spectra due to clustering of sources below the detection limit in Herschel and Planck surveys. An optimal survey for selecting strongly lensed proto-spheroidal galaxies is described, and it is shown how they can be easily distinguished from the other source populations. We also discuss the detectability of the imprints of the 1-halo and 2-halo regimes on angular correlation functions and clustering power spectra, as well as the constraints on cosmological parameters that can be obtained from the determinations of these quantities. The novel data relevant to derive the first sub-millimeter estimates of the local luminosity functions of starburst and late-type galaxies, and the constraints on the properties of rare source populations, such as blazars, are also briefly described.Comment: 16 pages, 10 figures. Accepted for publication on MNRA

    GMOS Spectroscopy of SCUBA Galaxies Behind A851

    Get PDF
    We have identified counterparts to two submillimeter (submm) sources, SMM J09429+4659 and SMM J09431+4700, seen through the core of the z=0.41 cluster Abell 851. We employ deep 1.4-GHz observations and the far-infrared/radio correlation to refine the submm positions and then optical and near-infrared imaging to locate their counterparts. We identify an extremely red counterpart to SMM J09429+4659, while GMOS spectroscopy with Gemini-North shows that the R=23.8 radio source identified with SMM J09431+4700 is a hyperluminous infrared galaxy (L_FIR~1.5x10^13 L_sun) at z=3.35, the highest spectroscopic redshift so far for a galaxy discovered in the submm. The emission line properties of this galaxy are characteristic of a narrow-line Seyfert-1, although the lack of detected X-ray emission in a deep XMM-Newton observation suggests that the bulk of the luminosity of this galaxy is derived from massive star formation. We suggest that active nuclei, and the outflows they engender, may be an important part of the evolution of the brightest submm galaxies at high redshifts.Comment: to appear in the Oct 1 issue of ApJ Letter

    Gravitational lensing of extended high-redshift sources by dark matter haloes

    Get PDF
    High-redshift galaxies and quasi-stellar objects (QSOs) are most likely to be strongly lensed by intervening haloes between the source and the observer. In addition, a large fraction of lensed sources is expected to be seen in the submillimetre region, as a result of the enhanced magnification bias on the steep intrinsic number counts. We extend in three directions Blain's earlier study of this effect. First, we use a modification of the Press-Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes. Secondly, we discuss quantitatively the maximum magnification, \u3bcmax, that can be achieved for extended sources (galaxies) with realistic luminosity profiles, taking into account the possible ellipticity of the lensing potential. We find that \u3bcmax plausibly falls into the range 10-30 for sources of 1-10h-1 kpc effective radius at redshifts within 1-4. Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850 \u3bcm can exceed the unlensed counts by several orders of magnitude at flux densities 73 100 mJy, even with a conservative choice of the maximum magnification
    • …
    corecore