1,577,154 research outputs found

    Density-wave phases of dipolar fermions in a bilayer

    Full text link
    We investigate the phase diagram of dipolar fermions with aligned dipole moments in a two-dimensional (2D) bilayer. Using a version of the Singwi-Tosi-Land-Sjolander scheme recently adapted to dipolar fermions in a single layer [M. M. Parish and F. M. Marchetti, Phys. Rev. Lett. 108, 145304 (2012)], we determine the density-wave instabilities of the bilayer system within linear response theory. We find that the bilayer geometry can stabilize the collapse of the 2D dipolar Fermi gas with intralayer attraction to form a new density wave phase that has an orientation perpendicular to the density wave expected for strong intralayer repulsion. We thus obtain a quantum phase transition between stripe phases that is driven by the interplay between strong correlations and the architecture of the low dimensional system.Comment: 5 pages, 3 figure

    Maximum-likelihood method in quantum estimation

    Get PDF
    The maximum-likelihood method for quantum estimation is reviewed and applied to the reconstruction of density matrix of spin and radiation as well as to the determination of several parameters of interest in quantum optics.Comment: 12 pages, 4 figure

    Joint estimation of real squeezing and displacement

    Full text link
    We study the problem of joint estimation of real squeezing and amplitude of the radiation field, deriving the measurement that maximizes the probability density of detecting the true value of the unknown parameters. More generally, we provide a solution for the problem of estimating the unknown unitary action of a nonunimodular group in the maximum likelihood approach. Remarkably, in this case the optimal measurements do not coincide with the so called square-root measurements. In the case of squeezing and displacement we analyze in detail the sensitivity of estimation for coherent states and displaced squeezed states, deriving the asymptotic relation between the uncertainties in the joint estimation and the corresponding uncertainties in the optimal separate measurements of squeezing and displacement. A two-mode setup is also analyzed, showing how entanglement between optical modes can be used to approximate perfect estimation.Comment: 14 pages, 3 eps figures; a section has been added with new results in terms of Heisenberg uncertainty relations for the joint measuremen

    Entanglement at distance: qubits versus continuous variables

    Full text link
    We consider the problem of obtaining maximally entangled photon states at distance in the presence of loss. We compare the efficiency of two different schemes in establishing NN shared ebits: i) NN single ebit states with the qubit encoded on polarization; ii) a single continuous variable entangled state (emode) assisted by optimal local operation and classical communication (LOCC) protocol in order to obtain a 2N2^N-dimensional maximally entangled state, with qubits encoded on the photon number.Comment: 5 pages. 4 eps files. Use fortschritte.sty (included
    corecore