8,832 research outputs found

    Accurate measurement of ^{13}C - ^{15}N distances with solid-state NMR

    Full text link
    Solid-state NMR technique for measureing distances between hetero-nuclei in static powder samples is described. It is based on a two-dimensional single-echo scheme enhanced with adiabatic cross-polarization. As an example, the results for intra-molecular distances in α\alpha-crystalline form of glycine are presented. The measured NMR distances ^13 C(2) - ^15 N and ^13 C(1) - ^15 N are 1.496 ±\pm 0.002 \AA and 2.50 ±\pm 0.02 \AA, respectively.Comment: 12 page

    Quantum information processing using strongly-dipolar coupled nuclear spins

    Get PDF
    Dipolar coupled homonuclear spins present challenging, yet useful systems for quantum information processing. In such systems, eigenbasis of the system Hamiltonian is the appropriate computational basis and coherent control can be achieved by specially designed strongly modulating pulses. In this letter we describe the first experimental implementation of the quantum algorithm for numerical gradient estimation on the eigenbasis of a four spin system.Comment: 5 pages, 5 figures, Accepted in PR

    Rural Telecommunications Infrastructure Selection Using the Analytic Network Process.

    Get PDF
    The decisions involved in rural settings are of complex nature, with some aspects compounded by the presence of intangible criteria. Hence, a suitable approach is needed that can produce effective solutions. This paper describes the applicability of a multicriteria decision-making method, specifically the analytic network process (ANP), to model the selection of an appropriate telecommunications infrastructure technology, capable of deploying e-services in rural areas of developing countries. It aims to raise awareness among telecommunication planners about the availability of ANP, and to demonstrate its suitability to enhance the selection process. The proposed model is constructed based on concerned experts' views of relevant selection criteria and potential technology alternatives. Its network structure caters for all possible dependencies and interactions among criteria and alternatives

    New determination of structure parameters in strong field tunneling ionization theory of molecules

    Get PDF
    In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wavefunction of the molecular orbital from which the electron is removed. The orbital wavefunctions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory (DFT). We show that the asymptotic wavefunction can be improved with an iteration method and after one iteration accurate asymptotic wavefunctions and structure parameters are determined. With the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals

    Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing

    Get PDF
    We describe a method for improving coherent control through the use of detailed knowledge of the system's Hamiltonian. Precise unitary transformations were obtained by strongly modulating the system's dynamics to average out unwanted evolution. With the aid of numerical search methods, pulsed irradiation schemes are obtained that perform accurate, arbitrary, selective gates on multi-qubit systems. Compared to low power selective pulses, which cannot average out all unwanted evolution, these pulses are substantially shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR techniques on homonuclear spin systems are used to demonstrate the accuracy of these gates both in simulation and experiment. Simulations of the coherent evolution of a 3-qubit system show that the control sequences faithfully implement the unitary operations, typically yielding gate fidelities on the order of 0.999 and, for some sequences, up to 0.9997. The experimentally determined density matrices resulting from the application of different control sequences on a 3-spin system have overlaps of up to 0.99 with the expected states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of Chemical Physics, in pres

    Direct observation of hierarchical protein dynamics

    Get PDF
    One of the fundamental challenges of physical biology is to understand the relationship between protein dynamics and function. At physiological temperatures, functional motions arise from the complex interplay of thermal motions of proteins and their environments. Here, we determine the hierarchy in the protein conformational energy landscape that underlies these motions, based on a series of temperature-dependent magic-angle spinning multinuclear nuclear-magnetic-resonance relaxation measurements in a hydrated nanocrystalline protein. The results support strong coupling between protein and solvent dynamics above 160 kelvin, with fast solvent motions, slow protein side-chain motions, and fast protein backbone motions being activated consecutively. Low activation energy, small-amplitude local motions dominate at low temperatures, with larger-amplitude, anisotropic, and functionally relevant motions involving entire peptide units becoming dominant at temperatures above 220 kelvin

    Occult Cerebrovascular Disease and Late-Onset Epilepsy: Could Loss of Neurovascular Unit Integrity Be a Viable Model?

    Get PDF
    Late-onset epilepsy (LOE) first occurs after 60 years of age and may be due to occult cerebrovascular disease (CVD) which confers an increased risk of stroke. However, patients with late-onset epilepsy are not currently consistently investigated or treated for cerebrovascular risk factors. We discuss how abnormalities of neurovascular unit function, namely, changes in regional cerebral blood flow and blood brain barrier disruption, may be caused by occult cerebrovascular disease but present clinically as late-onset epilepsy. We describe novel magnetic resonance imaging methods to detect abnormal neurovascular unit function in subjects with LOE and controls. We hypothesise that occult CVD may cause LOE as a result of neurovascular unit dysfunction

    Similarities and differences between molecular order in the nematic and twist-bend nematic phases of a symmetric liquid crystal dimer

    Get PDF
    The order parameter, Szz, where z is the para axis of the difluoroterphenyl groups in DTC5C9, have been obtained from chemical shift anisotropies measured by ¹³C – {¹1H} NMR experiments at temperatures throughout the nematic, NU, and twist-bend nematic, NTB, phases shown by this compound. The order parameter temperature profiles are unusual in having a maximum value in the NU phase and then decreasing until the NTB phase is reached. There is a small discontinuity (~2%) in Szz at T_(NN_TB )and then a gradual decrease until a new phase appears. This behaviour is interpreted as revealing a temperature-dependent tilting of local directors in both phases away from the applied magnetic field direction. In the enantiomorphic twist-bend phase this tilt is consistent with the structure of the phase as a helical arrangement of local directors, whilst in the high-temperature non-chiral nematic the tilt must involve a non-chiral arrangement. It is proposed that in both phases the tilting of directors has a common origin in the bent shape of the molecules
    corecore