123 research outputs found
Enhanced ZnR/GPR39 activity in breast cancer, an alternative trigger of signaling leading to cell growth
Acquired resistance to the estrogen receptor (ER) antagonist tamoxifen, is a major obstacle in treatment of breast cancer. Changes in Zn2+ accumulation and distribution are associated with tamoxifen-resistance and breast cancer progression. The Zn2+-sensing G-protein coupled receptor, ZnR/GPR39, triggers signaling leading to cell growth, but a role for this receptor in breast cancer in unknown. Using fluorescence imaging, we found Zn2+-dependent Ca2+ release, mediated by ZnR/GPR39 activity, in TAMR tamoxifen-resistant cells derived from MCF-7 cells, but not in ER-expressing MCF-7 or T47D cells. Furthermore, ZnR/GPR39 signaling was monitored in ER negative BT20, MDA-MB-453 and JIMT-1 cells. Expression of ZnR/GPR39 was increased in grade 3 human breast cancer biopsies compared to grade 2. Consistently, analysis of two breast cancer patient cohorts, GDS4057 and TCGA, indicated that in ER-negative tumors higher ZnR/GPR39 mRNA levels are associated with more aggressive tumors. Activation of ZnR/GPR39 in TAMR cells triggered MAPK, mTOR and PI3K signaling. Importantly, enhanced cell growth and invasiveness was observed in the ER negative breast cancer cells, TAMR, MDA-MB-453 and BT20 cells but not in the ER expressing MCF-7 cells. Thus, we suggest ZnR/GPR39 as a potential therapeutic target for combination treatment in breast cancer, particularly relevant in ER negative tumors
Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice
Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution or contributions to responder tumor growth have been elusive. Here, we have demonstrated that Scal(+)cKit(-) hematopoietic BMCs of mouse hosts bearing instigating tumors promote the growth of responding tumors that form with a myofibroblast-rich, desmoplastic stroma. Such stroma is almost always observed in malignant human adenocarcinomas and is an indicator of poor prognosis. We then identified granulin (GRN) as the most upregulated gene in instigating Scal(+)cKit(-) BMCs relative to counterpart control cells. The GRN(+) BMCs that were recruited to the responding tumors induced resident tissue fibroblasts to express genes that promoted malignant tumor progression; indeed, treatment with recombinant GRN alone was sufficient to promote desmoplastic responding tumor growth. Further, analysis of tumor tissues from a cohort of breast cancer patients revealed that high GRN expression correlated with the most aggressive triple-negative, basal-like tumor subtype and reduced patient survival. Our data suggest that GRN and the unique hematopoietic BMCs that produce it might serve as novel therapeutic targets
Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.
Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer
Downregulation of miR-92a Is Associated with Aggressive Breast Cancer Features and Increased Tumour Macrophage Infiltration
BACKGROUND: MicroRNAs are small non-coding RNAs involved in the regulation of gene expression on a posttranscriptional level. These regulatory RNAs have been implicated in numerous cellular processes and are further deregulated in different cancer types, including breast cancer. MiR-92a is part of the miR-17∼92 cluster, which was first reported to be linked to tumourigenesis. However, little is known about the expression of miR-92a in breast cancer and potential associations to tumour properties. The expression of miR-92a was therefore characterized in 144 invasive breast cancer samples using in situ hybridization and related to clinico-pathological data as well as to selected key properties of the tumour stroma, including the presence of macrophages (CD68) and cancer activated fibroblasts (alpha-SMA). METHODOLOGY/PRINCIPAL FINDINGS: To measure miR-92a levels, an in situ hybridisation protocol was developed and validated using cell lines and miR-92a inhibitors. The expression in the tumour samples was objectively evaluated using digital image analysis program subtracting background activities. We found that the miR-92a expression varied between tumours and was inversely correlated to tumour grade (r = -0.276, p = 0.003) and recurrence-free survival (p = 0.008) and provided independent prognostic information in multivariate Cox analysis (HR: 0.375, CI: 0.145-0.972, p = 0.043). MiR-92a was moreover inversely correlated to the number of infiltrating macrophages in the tumour stroma (r = -0.357, p<0.001), and downregulation of miR-92a promoted cell migration (p<0.01). CONCLUSIONS/SIGNIFICANCE: This study demonstrates that downregulation of miR-92a in breast cancer is linked to key epithelial and stromal properties as well as clinical outcome
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
Tumor Tissue Explant Culture of Patient-Derived Xenograft as Potential Prioritization Tool for Targeted Therapy
Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 × 2 × 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 × 2 × 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed
GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells
<p>Abstract</p> <p>Background</p> <p>Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER<sup>+</sup>) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88), also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER<sup>+ </sup>breast cancer cells</p> <p>Methods</p> <p>We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined.</p> <p>Results</p> <p>GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole.</p> <p>Conclusion</p> <p>Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER<sup>+ </sup>breast cancer.</p
AXL-associated tumor inflammation as a poor prognostic signature in chemotherapy-treated triple-negative breast cancer patients
A subgroup of triple-negative breast cancer (TNBC) shows epithelial-to-mesenchymal transition (EMT) features, which are sustained by the interaction between cancer cells and tumor-associated macrophages (TAMs). In this study, the clinical relevance of 30 EMT-related kinases and the potential cross-talk with TAMs were investigated in a cohort of 203 TNBC patients treated with adjuvant chemotherapy. The prognostic value of the evaluated markers was validated in two independent cohorts of TNBC patients treated with adjuvant chemotherapy (N=95; N=137). In vitro, we investigated the potential synergism between cancer cells and TAMs. We found that the EMT-related kinase AXL showed the highest correlation with the frequency of CD163-positive macrophages (rS=0.503; P<0.0001). Relapsing TNBC patients presented high expression of AXL (P<0.0001) and CD163 (P<0.018), but only AXL retained independent prognostic significance in multivariate analysis (relapse-free survival, P=0.002; overall survival P=0.001). In vitro analysis demonstrated that AXL-expressing TNBC cells were able to polarize human macrophages towards an M2-like phenotype, and modulate a specific pattern of pro-tumor cytokines and chemokines. Selective AXL inhibition impaired the activity of M2-like macrophages, reducing cancer cell invasiveness, and restoring the sensitivity of breast cancer cells to chemotherapeutic drugs. These data suggest that the EMT-related kinase AXL overexpressed in cancer cells has prognostic significance, and contributes to the functional skewing of macrophage functions in TNBC. AXL inhibition may represent a novel strategy to target cancer cells, as well as tumor-promoting TAMs in TNBC
The microenvironment in breast cancer progression: biology and implications for treatment
Breast cancer comprises a heterogeneous group of malignancies derived from the ductal epithelium. The microenvironment of these cancers is now recognized as a critical participant in tumor progression and therapeutic responses. Recent data demonstrate significant gene expression and epigenetic alterations in cells composing the microenvironment during disease progression, which can be explored as biomarkers and targets for therapy. Indeed, gene expression signatures derived from tumor stroma have been linked to clinical outcomes. There is increasing interest in translating our current understanding of the tumor microenvironment to the development of novel therapies
- …