513 research outputs found
On Properties of Update Sequences Based on Causal Rejection
We consider an approach to update nonmonotonic knowledge bases represented as
extended logic programs under answer set semantics. New information is
incorporated into the current knowledge base subject to a causal rejection
principle enforcing that, in case of conflicts, more recent rules are preferred
and older rules are overridden. Such a rejection principle is also exploited in
other approaches to update logic programs, e.g., in dynamic logic programming
by Alferes et al. We give a thorough analysis of properties of our approach, to
get a better understanding of the causal rejection principle. We review
postulates for update and revision operators from the area of theory change and
nonmonotonic reasoning, and some new properties are considered as well. We then
consider refinements of our semantics which incorporate a notion of minimality
of change. As well, we investigate the relationship to other approaches,
showing that our approach is semantically equivalent to inheritance programs by
Buccafurri et al. and that it coincides with certain classes of dynamic logic
programs, for which we provide characterizations in terms of graph conditions.
Therefore, most of our results about properties of causal rejection principle
apply to these approaches as well. Finally, we deal with computational
complexity of our approach, and outline how the update semantics and its
refinements can be implemented on top of existing logic programming engines.Comment: 59 pages, 2 figures, 3 tables, to be published in "Theory and
Practice of Logic Programming
Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic
The hypergraph duality problem DUAL is defined as follows: given two simple
hypergraphs and , decide whether
consists precisely of all minimal transversals of (in which case
we say that is the dual of ). This problem is
equivalent to deciding whether two given non-redundant monotone DNFs are dual.
It is known that non-DUAL, the complementary problem to DUAL, is in
, where
denotes the complexity class of all problems that after a nondeterministic
guess of bits can be decided (checked) within complexity class
. It was conjectured that non-DUAL is in . In this paper we prove this conjecture and actually
place the non-DUAL problem into the complexity class which is a subclass of . We here refer to the logtime-uniform version of
, which corresponds to , i.e., first order
logic augmented by counting quantifiers. We achieve the latter bound in two
steps. First, based on existing problem decomposition methods, we develop a new
nondeterministic algorithm for non-DUAL that requires to guess
bits. We then proceed by a logical analysis of this algorithm, allowing us to
formulate its deterministic part in . From this result, by
the well known inclusion , it follows
that DUAL belongs also to . Finally, by exploiting
the principles on which the proposed nondeterministic algorithm is based, we
devise a deterministic algorithm that, given two hypergraphs and
, computes in quadratic logspace a transversal of
missing in .Comment: Restructured the presentation in order to be the extended version of
a paper that will shortly appear in SIAM Journal on Computin
Answer Set Solving with Bounded Treewidth Revisited
Parameterized algorithms are a way to solve hard problems more efficiently,
given that a specific parameter of the input is small. In this paper, we apply
this idea to the field of answer set programming (ASP). To this end, we propose
two kinds of graph representations of programs to exploit their treewidth as a
parameter. Treewidth roughly measures to which extent the internal structure of
a program resembles a tree. Our main contribution is the design of
parameterized dynamic programming algorithms, which run in linear time if the
treewidth and weights of the given program are bounded. Compared to previous
work, our algorithms handle the full syntax of ASP. Finally, we report on an
empirical evaluation that shows good runtime behaviour for benchmark instances
of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the
workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full
proofs and more example
Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription
Circumscription is a representative example of a nonmonotonic reasoning
inference technique. Circumscription has often been studied for first order
theories, but its propositional version has also been the subject of extensive
research, having been shown equivalent to extended closed world assumption
(ECWA). Moreover, entailment in propositional circumscription is a well-known
example of a decision problem in the second level of the polynomial hierarchy.
This paper proposes a new Boolean Satisfiability (SAT)-based algorithm for
entailment in propositional circumscription that explores the relationship of
propositional circumscription to minimal models. The new algorithm is inspired
by ideas commonly used in SAT-based model checking, namely counterexample
guided abstraction refinement. In addition, the new algorithm is refined to
compute the theory closure for generalized close world assumption (GCWA).
Experimental results show that the new algorithm can solve problem instances
that other solutions are unable to solve
The DLV System for Knowledge Representation and Reasoning
This paper presents the DLV system, which is widely considered the
state-of-the-art implementation of disjunctive logic programming, and addresses
several aspects. As for problem solving, we provide a formal definition of its
kernel language, function-free disjunctive logic programs (also known as
disjunctive datalog), extended by weak constraints, which are a powerful tool
to express optimization problems. We then illustrate the usage of DLV as a tool
for knowledge representation and reasoning, describing a new declarative
programming methodology which allows one to encode complex problems (up to
-complete problems) in a declarative fashion. On the foundational
side, we provide a detailed analysis of the computational complexity of the
language of DLV, and by deriving new complexity results we chart a complete
picture of the complexity of this language and important fragments thereof.
Furthermore, we illustrate the general architecture of the DLV system which
has been influenced by these results. As for applications, we overview
application front-ends which have been developed on top of DLV to solve
specific knowledge representation tasks, and we briefly describe the main
international projects investigating the potential of the system for industrial
exploitation. Finally, we report about thorough experimentation and
benchmarking, which has been carried out to assess the efficiency of the
system. The experimental results confirm the solidity of DLV and highlight its
potential for emerging application areas like knowledge management and
information integration.Comment: 56 pages, 9 figures, 6 table
Compilability of Abduction
Abduction is one of the most important forms of reasoning; it has been
successfully applied to several practical problems such as diagnosis. In this
paper we investigate whether the computational complexity of abduction can be
reduced by an appropriate use of preprocessing. This is motivated by the fact
that part of the data of the problem (namely, the set of all possible
assumptions and the theory relating assumptions and manifestations) are often
known before the rest of the problem. In this paper, we show some complexity
results about abduction when compilation is allowed
Raman scattering evidence for a cascade-like evolution of the charge-density-wave collective amplitude mode
The two-dimensional rare-earth tri-tellurides undergo a unidirectional
charge-density-wave (CDW) transition at high temperature and, for the heaviest
members of the series, a bidirectional one at low temperature. Raman scattering
experiments as a function of temperature on DyTe and on LaTe at 6 GPa
provide a clear-cut evidence for the emergence of the respective collective CDW
amplitude excitations. In the unidirectional CDW phase, we surprisingly
discover that the amplitude mode develops as a succession of two mean-field,
BCS-like transitions in different temperature ranges
- …