25 research outputs found

    Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy

    Get PDF
    Nitration of proteins on tyrosine residues, which can occur due to polluted air under "summer smog" conditions, has been shown to increase the allergic potential of allergens. Since nitration of tyrosine residues is also observed during inflammatory responses, this modification could directly influence protein immunogenicity and might therefore contribute to food allergy induction. In the current study we have analyzed the impact of protein nitration on sensitization via the oral route.BALB/c mice were immunized intragastrically by feeding untreated ovalbumin (OVA), sham-nitrated ovalbumin (snOVA) or nitrated ovalbumin (nOVA) with or without concomitant acid-suppression. To analyze the impact of the sensitization route, the allergens were also injected intraperitoneally. Animals being fed OVA or snOVA under acid-suppressive medication developed significantly elevated levels of IgE, and increased titers of specific IgG1 and IgG2a antibodies. Interestingly, oral immunizations of nOVA under anti-acid treatment did not result in IgG and IgE formation. In contrast, intraperitoneal immunization induced high levels of OVA specific IgE, which were significantly increased in the group that received nOVA by injection. Furthermore, nOVA triggered significantly enhanced mediator release from RBL cells passively sensitized with sera from allergic mice. Gastric digestion experiments demonstrated protein nitration to interfere with protein stability as nOVA was easily degraded, whereas OVA and snOVA remained stable up to 120 min. Additionally, HPLC-chip-MS/MS analysis showed that one tyrosine residue (Y(107)) being very efficiently nitrated is part of an ovalbumin epitope recognized exclusively after oral sensitization.These data indicated that despite the enhanced triggering capacity in existing allergy, nitration of OVA may be associated with a reduced de novo sensitizing capability via the oral route due to enhanced protein digestibility and/or changes in antibody epitopes

    The dual-acting chemotherapeutic agent Alchemix induces cell death independently of ATM and p53

    Get PDF
    YesTopoisomerase inhibitors are in common use as chemotherapeutic agents although they can display reduced efficacy in chemotherapy-resistant tumours, which have inactivated DNA damage response (DDR) genes, such as ATM and TP53. Here, we characterise the cellular response to the dual-acting agent, Alchemix (ALX), which is a modified anthraquinone that functions as a topoisomerase inhibitor as well as an alkylating agent. We show that ALX induces a robust DDR at nano-molar concentrations and this is mediated primarily through ATR- and DNA-PK- but not ATM-dependent pathways, despite DNA double strand breaks being generated after prolonged exposure to the drug. Interestingly, exposure of epithelial tumour cell lines to ALX in vitro resulted in potent activation of the G2/M checkpoint, which after a prolonged arrest, was bypassed allowing cells to progress into mitosis where they ultimately died by mitotic catastrophe. We also observed effective killing of lymphoid tumour cell lines in vitro following exposure to ALX, although, in contrast, this tended to occur via activation of a p53-independent apoptotic pathway. Lastly, we validate the effectiveness of ALX as a chemotherapeutic agent in vivo by demonstrating its ability to cause a significant reduction in tumour cell growth, irrespective of TP53 status, using a mouse leukaemia xenograft model. Taken together, these data demonstrate that ALX, through its dual action as an alkylating agent and topoisomerase inhibitor, represents a novel anti-cancer agent that could be potentially used clinically to treat refractory or relapsed tumours, particularly those harbouring mutations in DDR genes

    ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells

    No full text
    TP53 and ataxia telangiectasia mutated (ATM) defects are associated with genomic instability, clonal evolution, and chemoresistance in chronic lymphocytic leukemia (CLL). Currently, therapies capable of providing durable remissions in relapsed/refractory TP53- or ATM-defective CLL are lacking. Ataxia telangiectasia and Rad3-related (ATR) mediates response to replication stress, the absence of which leads to collapse of stalled replication forks into chromatid fragments that require resolution through the ATM/p53 pathway. Here, using AZD6738, a novel ATR kinase inhibitor, we investigated ATR inhibition as a synthetically lethal strategy to target CLL cells with TP53 or ATM defects. Irrespective of TP53 or ATM status, induction of CLL cell proliferation upregulated ATR protein, which then became activated in response to replication stress. In TP53- or ATM-defective CLL cells, inhibition of ATR signaling by AZD6738 led to an accumulation of unrepaired DNA damage, which was carried through into mitosis because of defective cell cycle checkpoints, resulting in cell death by mitotic catastrophe. Consequently, AZD6738 was selectively cytotoxic to both TP53- and ATM-defective CLL cell lines and primary cells. This was confirmed in vivo using primary xenograft models of TP53- or ATM-defective CLL, where treatment with AZD6738 resulted in decreased tumor load and reduction in the proportion of CLL cells with such defects. Moreover, AZD6738 sensitized TP53- or ATM-defective primary CLL cells to chemotherapy and ibrutinib. Our findings suggest that ATR is a promising therapeutic target for TP53- or ATM-defective CLL that warrants clinical investigation

    Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom leukemia research fund chronic lymphocytic leukemia 4 trial

    No full text
    PURPOSE: The prognostic significance of ATM mutations in chronic lymphocytic leukemia (CLL) is unclear. We assessed their impact in the context of a prospective randomized trial.PATIENTS AND METHODS: We analyzed the ATM gene in 224 patients treated on the Leukemia Research Fund Chronic Lymphocytic Leukemia 4 (LRF-CLL4) trial with chlorambucil or fludarabine with and without cyclophosphamide. ATM status was analyzed by denaturing high-performance liquid chromatography and was related to treatment response, survival, and the impact of TP53 alterations for the same patient cohort.RESULTS: We identified 36 ATM mutations in 33 tumors, 16 with and 17 without 11q deletion. Mutations were associated with advanced disease stage and involvement of multiple lymphoid sites. Patients with both ATM mutation and 11q deletion showed significantly reduced progression-free survival (median, 7.4 months) compared with those with ATM wild type (28.6 months), 11q deletion alone (17.1 months), or ATM mutation alone (30.8 months), but survival was similar to that in patients with monoallelic (6.7 months) or biallelic (3.4 months) TP53 alterations. This effect was independent of treatment, immunoglobulin heavy chain variable gene (IGHV) status, age, sex, or disease stage. Overall survival for patients with biallelic ATM alterations was also significantly reduced compared with those with ATM wild type or ATM mutation alone (median, 42.2 v 85.5 v 77.6 months, respectively).CONCLUSION: The combination of 11q deletion and ATM mutation in CLL is associated with significantly shorter progression-free and overall survival following first-line treatment with alkylating agents and purine analogs. Assessment of ATM mutation status in patients with 11q deletion may influence the choice of subsequent therapy

    USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status

    Get PDF
    The role of deubiquitylase ubiquitin-specific protease 7 (USP7) in the regulation of the p53-dependent DNA damage response (DDR) pathway is well established. Whereas previous studies have mostly focused on the mechanisms underlying how USP7 directly controls p53 stability, we recently showed that USP7 modulates the stability of the DNA damage responsive E3 ubiquitin ligase RAD18. This suggests that targeting USP7 may have therapeutic potential even in tumors with defective p53 or ibrutinib resistance. To test this hypothesis, we studied the effect of USP7 inhibition in chronic lymphocytic leukemia (CLL) where the ataxia telangiectasia mutated (ATM)–p53 pathway is inactivated with relatively high frequency, leading to treatment resistance and poor clinical outcome. We demonstrate that USP7 is upregulated in CLL cells, and its loss or inhibition disrupts homologous recombination repair (HRR). Consequently, USP7 inhibition induces significant tumor-cell killing independently of ATM and p53 through the accumulation of genotoxic levels of DNA damage. Moreover, USP7 inhibition sensitized p53-defective, chemotherapy-resistant CLL cells to clinically achievable doses of HRR-inducing chemotherapeutic agents in vitro and in vivo in a murine xenograft model. Together, these results identify USP7 as a promising therapeutic target for the treatment of hematological malignancies with DDR defects, where ATM/p53-dependent apoptosis is compromised

    The impact of SF3B1 mutations in CLL on the DNA-damage response

    No full text
    Mutations or deletions in TP53 or ATM are well-known determinants of poor prognosis in chronic lymphocytic leukemia (CLL), but only account for approximately 40% of chemo-resistant patients. Genome-wide sequencing has uncovered novel mutations in the splicing factor sf3b1, that were in part associated with ATM aberrations, suggesting functional synergy. We first performed detailed genetic analyses in a CLL cohort (n=110) containing ATM, SF3B1 and TP53 gene defects. Next, we applied a newly developed multiplex assay for p53/ATM target gene induction and measured apoptotic responses to DNA damage. Interestingly, SF3B1 mutated samples without concurrent ATM and TP53 aberrations (sole SF3B1) displayed partially defective ATM/p53 transcriptional and apoptotic responses to various DNA-damaging regimens. In contrast, NOTCH1 or K/N-RAS mutated CLL displayed normal responses in p53/ATM target gene induction and apoptosis. In sole SF3B1 mutated cases, ATM kinase function remained intact, and γH2AX formation, a marker for DNA damage, was increased at baseline and upon irradiation. Our data demonstrate that single mutations in sf3b1 are associated with increased DNA damage and/or an aberrant response to DNA damage. Together, our observations may offer an explanation for the poor prognosis associated with SF3B1 mutation
    corecore